

Australia’s 2020 Cyber Security Strategy – BSA Comments

aspect of our lives. Indeed, as a recent report3 observes, technology is a critical component of
modern economies like Australia, with the technology sector contributing 6.6% of Australian GDP,
employing over half a million workers, supporting many small and medium-sized businesses, and
underpinning innovation and productivity growth in almost every other industry.

With these opportunities, however, there also come risks, including large-scale data theft, privacy
violations, phishing scams, ransomware, and malicious information operations that affect millions of
people around the world each year.

Addressing this challenge requires innovative cybersecurity practices and tools to defend the integrity,
privacy, and utility of the Internet ecosystem, and we offer the comments and recommendations below
in the hope that these will be useful to aid the Australian government in considering how best to
position Australia to “meet cyber threats, now and into the future”4 with the 2020 Strategy.

Our submission focuses on:

a. guiding principles and elements for the 2020 Strategy; and

b. three specific questions in the Discussion Paper, concerning the existing regulatory
environment, ‘built in’ security for digital goods, and services and instilling better trust in ICT
supply chains.

C. Guiding Principles and Elements for the 2020 Strategy

As a general response to the various questions posed in the Discussion Paper concerning the roles,
functions, and responsibilities of the government, the industry, and consumers, BSA recommends
that the Australian government should consider rooting the 2020 Strategy, and all future cyber
security policies adopted thereunder, in six overarching guiding principles, which have been derived
from BSA’s and BSA’s members’ experience working on cyber security issues with government
around the world:

1. Policies should be aligned with internationally recognised technical standards. Internationally
recognised technical standards provide widely vetted, consensus-based frameworks for
defining and implementing effective approaches to cyber security, and facilitate common
approaches to common challenges, thus enabling collaboration and interoperability.
Alignment with internationally recognised technical standards and guidance, as such as the
International Organization for Standardization (ISO)/International Electrotechnical
Commission (IEC) Technical Report 27103, can ensure that Australia benefits from proven
approaches to cyber defence and is even better-positioned to cooperate inter-operably with
the international community in confronting transnational threats, especially with respect to
essential services systems5 protection.

Interoperability is a particular concern in areas – such as security of Internet of Things
technologies and cloud computing services – where gaps in internationally recognised
technical standards have sparked the proliferation of different government- and industry-

3 AlphaBeta, Australia’s Digital Opportunity: Growing a $122 Billion a Year Tech Industry, September 2019, available at:
https://www.alphabeta.com/our-research/australias-digital-opportunity-growing-a-122-billion-a-year-tech-industry/

4 As noted on page 5 of the Discussion Paper.

5 Which the Discussion Paper notes at page 15, and at various other portions, is at high risk of malicious activity.

Page 2 of 7

Australia’s 2020 Cyber Security Strategy – BSA Comments

driven approaches. BSA strongly urges the Australian government to embrace multilateral,
interoperable initiatives to address security in these areas rather than to seek to develop
national standards that could duplicate and potentially conflict with existing efforts. Where
there are gaps in internationally recognised technical standards, BSA calls upon the
Australian government to work with other government and industry partners to address those
gaps, building a basis for policies that can improve security consistently and cooperatively
across different markets.

2. Policies should be risk-based, outcome-focused, and technology-neutral. Malicious cyber
security activity carries different risks for different systems. There are generally multiple
approaches to defending against the same type of cyber-attack, and multiple approaches to
improving system security and resiliency. The 2020 Strategy should prioritise approaches and
policies that address different levels of risk and enable owners and operators of networks and
systems to defend their infrastructure with the technologies and approaches they deem best
to meet the level of security desired.

3. Policies should rely on market-driven mechanisms where possible. Information technology is
constantly evolving, and cyber security threats evolve with it. Neither technologies nor threats
are bound by national borders, meaning that overreliance on government structures or
regulatory enforcement is unlikely to achieve desired results. Policies that incentivise and
leverage market forces to drive cyber security are likely to be the most successful in keeping
pace with the changing security environment and in achieving the broadest effect.

4. Policies should be oriented to protect privacy. No approach to cyber security should
compromise the integrity of the data it seeks to defend against malicious cyber activity;
cyber security policies should be carefully attuned to privacy considerations. Key
considerations include ensuring civilian leadership, encouraging strong data protections,
protecting personal information in information-sharing mechanisms, and avoiding policies that
undermine the use of privacy-enhancing technologies. Australia has already taken a
commendable principles-based, outcomes-focused approach to privacy and personal
information protection, primarily through the Australian Privacy Principles. The 2020 Strategy
should continue to embrace the enabling effect that this principles-based approach has had
on innovation and development of the digital economy in Australia.

5. Policies should be flexible and adaptable to encourage innovation. Information technology
and the millions of jobs technology supports depend on the ability to innovate new solutions.
Likewise, cyber security requires constant innovation to keep pace with changing threats.
Policies must be flexible and adaptable to enable businesses to develop new approaches to
new challenges and to deliver innovative products to the customers that depend on them. In
this respect, we commend the Australian government for already recognising the need for
flexible laws in the Discussion Paper.6

6. Policies should be rooted in public-private collaboration. Cyber security is a shared
responsibility across government and private stakeholders. Although governments often hold
critical cyber security tools and information, the private sector is responsible for significant
elements of the critical infrastructure and the technology platforms that are targeted by
malicious cyber activity, as well as many of the cyber security tools and services necessary to
defend against such threats. Only by working in close collaboration with the private sector can

6 At page 11 of the Discussion Paper.

Page 3 of 7

Australia’s 2020 Cyber Security Strategy – BSA Comments

governments truly combat cyber security threats while sustaining the vitality of the digital
economy. In this respect, we are pleased to note that the Discussion Paper already calls out
the need for the 2020 Strategy to be developed and supported through partnership and
collaboration with the industry.7

Aligned with the six guiding principles above, BSA further recommends that the Australian
government should consider incorporating into the 2020 Strategy the following elements, which are
described in further detail in the BSA International Cybersecurity Policy Framework8 (attached as
Annex A to this submission), and which have again been developed through BSA’s and BSA’s
members’ experience working on cyber security issues globally:

1. Relating to the government: government organisational structures, cyber security strategy and
plans (including for critical infrastructure), stakeholder engagement mechanisms,
preparedness and response processes, procurement policies, support for research and
development, and international engagement and co-operation.9

2. Relating to the private sector: outcomes-focused and risk-based policies for critical
information infrastructure cyber security, market-driven solutions for consumer products, and
support for cross-border data flows and enablement of emerging technologies.10

3. Relating to citizens and the workforce: public cyber security awareness initiatives and tools,
and programs and support for cyber security education, training, and career development.11

4. Relating to cyber-crime: a comprehensive legal framework consistent with the Budapest
Convention on Cyber Crime12 and law enforcement technical training and support to address
cyber-crime.13

D. Specific Questions in the Discussion Paper

In this section, we focus on three specific questions posed in the Discussion Paper:

• Question 10: “Is the regulatory environment for cyber security appropriate? Why or why not?”

• Question 12: “What needs to be done so that cyber security is ‘built in’ to digital goods and
services?”

• Question 13: “How could we approach instilling better trust in ICT supply chains?”

7 At pages 5 and 15 of the Discussion Paper.

8 Available at: http://bsacybersecurity.bsa.org/report-item/bsa-international-cybersecurity-policy-framework/.

9 As described on pages 6-13 and 19-21 of BSA’s International Cybersecurity Policy Framework.

10 As described on pages 13-18 of BSA’s International Cybersecurity Policy Framework.

11 As described on pages 18-19 of BSA’s International Cybersecurity Policy Framework.

12 The Convention on Cybercrime of the Council of Europe (CETS No. 185), available at https://www.coe.int/en/web/
cybercrime/the-budapest-convention.

13 As described on pages 19-20 of BSA’s International Cybersecurity Policy Framework.

Page 4 of 7

Australia’s 2020 Cyber Security Strategy – BSA Comments

Question 10: “Is the regulatory environment for cybers security appropriate? Why or why
not?”

In general, BSA believes the Australian government has created a regulatory environment that
promotes strong cyber security without constraining innovation or digital commerce. However, the
government’s adoption of the Telecommunications and Other Legislation Amendment (Assistance
and Access) Act 2018 (Assistance and Access Act) has created concerns about Australia’s ability
and commitment to embrace the most effective cyber security policies and technologies.

Strong encryption represents a critically important cyber security technology. It underpins data
security, identity management, and protection of devices against unauthorised access. It also plays a
crucial role in defending critical infrastructure systems. Yet, notwithstanding limitations on mandating
the weakening of encryption within the legislation, the Australian government has framed the
Assistance and Access Act as an authority necessary to enable Australian law enforcement and
intelligence officials to gain access to encrypted data and devices. Security experts around the world
have recognised that any conceivable approach to ensuring law enforcement access to encrypted
data will result in a weakening of the encryption technology in use.

As the Australian government considers and develops the 2020 Strategy, it must pursue policies that
address both the threats of today and the threats of tomorrow. Promoting strong and ubiquitous

encryption is essential both now and into the future. As Australia embraces 5G technology, for
example, encryption – and end-to-end encryption, particularly – will take on even greater importance
as a way to protect massive volumes of data traversing increasingly decentralised, potentially
untrusted network infrastructure. Likewise, encryption has also been identified as key to securing the
Internet of Things.

To position the Australian government to embrace technologies that will best protect Australia from
malicious cyber-attacks, BSA recommends that the Australian government should revisit the
Assistance and Access Act and work with the industry to communicate, in implementing guidance and
public messaging, that encryption should remain inviolable and to promote the adoption of strong
encryption wherever appropriate and necessary.

Question 12: “What needs to be done so that cyber security is ‘built in’ to digital goods and
services?”

BSA commends the Australian government for recognising that there is a need for digital products
and services to have security built in “by-design”. Given that malicious actors increasingly target
vulnerabilities in software to attack critical networks and systems, software security has emerged as
an urgent priority. Software developers, their customers, and policymakers need tools to describe,
assess, and encourage security across the entire software lifecycle, from its development to the end
of its life.

As the Australian government has noted, however, “visible and trusted industry standards do not yet
exist in most cases”.14 Indeed, there has not been a holistic framework that articulates best practices
for software security in a way that can be specifically described and effectively measured across
diverse development environments, software types, and coding languages.

14 At page 13 of the Discussion Paper.

Page 5 of 7

Australia’s 2020 Cyber Security Strategy – BSA Comments

To fill this significant gap in international cyber security policy, BSA has developed the BSA
Framework for Secure Software15 (Secure Software Framework)(attached as Annex B to this
submission). Building on best practices pioneered by many of BSA’s members, the Secure Software
Framework tackles complex security challenges through an adaptable and outcome-focused
approach that is risk-based, cost-effective, and repeatable. It is intended to encourage security-by-
design in software products and services, as well as in the myriad products that depend upon
software (from consumer Internet of Things devices to Industrial Control Systems), by helping
software development organisations:

1. describe the current state of software security in individual software products;

2. describe the target state of the software security in individual software products;

3. identify and prioritise opportunities for improvement in development and lifecycle
management processes;

4. assess progress toward the target state; and

5. communicate among internal and external stakeholders about software security and security
risks.

BSA accordingly recommends that the Australian government should consider the Secure Software
Framework as a basis for encouraging “built in” cyber security through the 2020 Strategy. BSA is
eager to work with the Australian government to explore how the Secure Software Framework can be
best incorporated into the 2020 Strategy, and would welcome the opportunity to discuss this initiative
further.

Question 13: “How could we approach instilling better trust in ICT supply chains?”

Managing security risks to ICT supply chains is an important priority for both governments and
businesses globally. Yet, mistargeted policy interventions aimed at improving security can introduce
unintended consequences by causing severe damage to the technologies and economic activities
they seek to protect. Effective government approaches to supply chain risk management recognise
the global, interconnected nature of supply chains and the threats against them, identifying and
disrupting malicious actors through policies and processes that are sustainable, reciprocal, and
transparent.

As the Australian government seeks to address risk and thereby instil better trust in ICT supply
chains, BSA recommends that the Australian government should consider adopting, as part of the
2020 Strategy, the following principles, which are described in the BSA Principles for Good
Governance: Supply Chain Risk Management16 (attached as Annex C to this submission), to guide
effective government supply-chain risk management policies:

• Adopt risk management approaches to supply chain security that, among others, tailor
mitigation strategies and prioritise actions based on the most relevant and potentially
impactful risks, while fostering global technology competition.

15 Available at: https://www.bsa.org/reports/bsa-framework-for-secure-software.

16 Available at: https://www.bsa.org/policy-filings/bsa-principles-for-good-governance-supply-chain-risk-management.

Page 6 of 7

Australia’s 2020 Cyber Security Strategy – BSA Comments

• Embrace interoperability – consistency and compatibility of regulations and technical
standards across national borders – to ensure that technology providers can develop,
maintain, and secure innovative products across global boundaries and help to facilitate
transnational operational collaboration against significant cyber threats.

• Ensure transparency in supply chain risk management policies and processes, including
government disclosure to suppliers of identified supply chain vulnerabilities.

• Exercise discretion when addressing malicious threats and avoid systemic interventions in
global supply chains.

• Pursue aggressive law enforcement against malicious actors.

• Undertake collaboration with key non-governmental stakeholders, including industry, in
securing supply chains and developing best practices for supply chain risk management.

• Establish meaningful mechanisms to ensure fairness and due process in resolving disputes
among stakeholders.

• Invest in research and development of new technological approaches to foster supply chain
integrity.

E. Conclusion

BSA commends the Australian government for its consultative process and strong engagement of the
industry in developing Australia’s 2020 Strategy, and thanks the Australian government again for this
opportunity to make a submission on this important matter.

BSA and our members would be delighted to further engage with the Australian government to
respond to any questions on this submission, and to explore ways in which BSA and our members
can work with the Australian government and other stakeholders to develop an effective and balanced
2020 Strategy, including on how best to incorporate and operationalise the BSA International
Cybersecurity Policy Framework, the BSA Framework for Security Software, and the BSA Principles
for Good Governance: Supply Chain Risk Management.

If you require any clarification or further information in respect of this submission, please contact Mr
Darryn Lim at

BSA | The Software Alliance

Page 7 of 7

Australia’s 2020 Cyber Security Strategy – BSA Comments

Annex A

BSA International Cybersecurity Framework

Australia’s 2020 Cyber Security Strategy – BSA Comments

Annex B

BSA Framework for Secure Software

The BSA Framework for Secure Software: A New Approach to Securing the Software Lifecycle

Modern society is built on software. Software powers personal technologies, critical
infrastructure, scientific research, and industries across every sector. It drives emerging
innovations such as the Internet of Things (IoT), blockchain, and artificial intelligence (AI). As
software becomes increasingly central to our lives, making it secure and reliable becomes
ever more critical in the face of an evolving and expansive cybersecurity threat landscape.

From within the software community, best practices
are emerging that help software developers address
important aspects of software security, including
security-by-design principles, secure development
lifecycle processes, and internationally recognized
standards for key security elements such as identity
management, encryption, and secure coding. Although
attention to each specific security consideration can
achieve marginal security gains, effective security
requires a comprehensive and risk-informed approach
that combines individual considerations into a holistic,
lifecycle-long framework. And a comprehensive
approach must be tailored to address the nuanced,
diverse, and evolving challenges associated with
different types of software and connected devices, from
the “ bare metal” to the most advanced.

Building on best practices pioneered by many of its
members, BSA | The Software Alliance has developed
a software security framework to bring consistency to
these complex challenges. The BSA Framework for
Secure Software is intended to establish an approach to
software security that is flexible, adaptable, outcome-

focused, risk-based, cost-effective, and repeatable.
Eschewing a one-size-fits-all solution, this voluntary
framework will provide a common organization
and structure to capture multiple approaches to
software security by identifying standards, guidelines,
and practices that can help software development
organizations achieve desired security outcomes while
accounting for the wide spectrum of intended uses,
risk profiles, and technological solutions among
software products.

Recent technological developments illustrate the
increasing ubiquity of software and the need for a
flexible, comprehensive software security framework.
Software-powered capabilities are rapidly expanding
from desktop computers and industrial systems into
nearly every corner of personal lives and business
activities, including diverse personal devices,
widespread sensors, smart appliances, diverse
business applications, connected vehicles, and
robots. As these capabilities evolve, software
development is growing increasingly diverse and
complex.

The BSA Framework for Secure Software is intended to establish an approach to software

security that is flexible, adaptable, outcome-focused, risk-based, cost -effect ive, and repeatable.

2 BSA | The Software Alliance

II. Introduction

The BSA Framework for Secure Software: A New Approach to Securing the Software Lifecycle

Consider the different ways software is used in several emerging technologies:

Internet of Things

Software is at the core of the
IoT, and secure software must be
at the core of IoT security. IoT
devices, like other computing
devices, have many different
forms, functions, and levels of
complexity. At the low end,
some “ bare metal” sensors lack
even a basic operating system
and contain only software code
sufficient to perform one or two
simple functions. More complex
devices may include operating
systems, AI algorithms, or the
hundreds of millions of lines of
code needed to operate many
of today’s connected vehicles.
How can we achieve confidence
in the security of software
products across this spectrum?

Software-as-a-Service (SaaS)

Many software applications
are now being operated as
services from a cloud-based
architecture in which code is
segmented across multiple
container environments,
updated constantly and in real-
time, and accessed via Internet
connections rather than installed
locally. Some SaaS applications
are updated dozens or even
hundreds of times each day,
with little or no disruption to
the user experience. How can
we craft a software security
framework that accounts for
the new technical approaches
to software security that SaaS
development may demand,
while at the same time driving
secure outcomes in traditional
software development?

Art ifi cial Intelligence

AI also brings new
considerations to software
development, including
new security challenges. AI
software often integrates
multiple software components,
frameworks, and platforms,
potentially introducing new risk
with each additional element.
Moreover, AI generally must
ingest and process enormous
data sets, introducing risk
through the exposure of
the data itself. Combined,
these risks demonstrate the
importance of software security
for AI products. Yet, at the same
time, AI products are creating
promising new approaches to
integrating security into software
development. How can we
address the risks — and harness
the benefits — for security in AI
software?

These diverse and constantly evolving software
development techniques and products demonstrate
the need for an outcome-focused approach that can
consistently ensure security across a broad array of
technical considerations. Additionally, static, inflexible
approaches will either disrupt innovation or fail to
keep pace with evolving threats because software is
constantly changing.

The intent of the Framework is to provide the entire
software industry with a comprehensive, adaptable,
and relevant framework for software security. By
adopting a flexible, outcome-focused approach
rooted in industry best practices and international
standards, the Framework is structured to be applicable
to the entire spectrum of (1) software development
organizations and vendors, from the individual
entrepreneur to large-scale, multi-national businesses;
(2) software development methods, from traditional to
DevOps; and (3) software products, from simple IoT
sensors to complex AI algorithms.

www b. sa o. rg 3

The BSA Framework for Secure Software: A New Approach to Securing the Software Lifecycle

Software security encompasses what a software development organizat ion does to protect

a software product and the associated crit ical data from vulnerabilit ies, internal and external

threats, crit ical errors, or misconfigurat ions that can affect performance or expose data.

Defining “ Software Security”

Software security encompasses what a software
development organization does to protect a software
product and the associated critical data from
vulnerabilities, internal and external threats, critical
errors, or misconfigurations that can affect performance
or expose data. It comprises both organizational
processes and product capabilities.

Organizat ional processes include governance
structures, strategies, guidance, and clearly defined
procedures that guide the development of software
in a manner that identifies and incorporates
security objectives throughout a product’s
lifecycle, protects the integrity of the development
environment, applies resources to incident and
vulnerability management, and manages the supply
chain that supports the software development
project.

Product securit y capabilit ies are technical aspects
of specific software products that are useful in
enabling the products to address common security
challenges, such as protecting data, preventing
unauthorized access or use, tracking incidents and
vulnerabilities, and managing unforeseen events.

Both organizational processes and product security
capabilities are vital elements of software security.

Software security is often discussed in relation to
software assurance. Software assurance has been
defined1 as the “ level of confidence that software is
free from vulnerabilities, either intentionally designed
into the software or accidentally inserted at any time
during its lifecycle, and that the software functions in
the intended manner.” It has also been defined2 as
“ the development and implementation of methods
and processes for ensuring that software functions
as intended and is free of design defects and
implementation flaws.” While such definitions may

1 https:/ /www.hsdl.org/?view&did=7447

suggest that the level of security associated with a
given software product could be ascertained simply
by measuring the presence and extent of defects or
vulnerabilities in its code base, software security is
rarely that straightforward.

One challenge is that — at least currently — it is
impractical to expect complex software code to be
entirely free of vulnerabilities. Indeed, according to
some estimates, software products currently average
roughly 1–5 defects per 1,000 lines of code, with
many complex software products incorporating tens
or hundreds of millions of lines of code in total.3 While
defect-free code should always be a developer’s
goal, it is not a realistic industry standard. Instead,
the goal should be the widespread adoption of
practices and processes that minimize code defects,
and particularly known software vulnerabilities, and
to maintain a proactive security posture oriented to
identifying and addressing problems before they can
be exploited. In fact, researchers have documented
substantial improvements in average software defect
density among leading software developers through
the implementation of secure development lifecycle
approaches and other software security best practices.

A second challenge is that any approach to software
security that is distilled into a test or series of tests
at a single point in time is inherently flawed. As
developers increasingly adopt iterative approaches to
development, incorporate third-party components, and
face evolving security threats, a software product may
change continually and substantially over its lifecycle.
Testing methodologies undergo evolution as well;
for example, the set of known software vulnerabilities
assessed by certain testing methodologies may be
frequently updated to include newly discovered flaws.
Security is a persistent requirement; while software
testing is a critical element of secure development,
it is not a stand-in for a sustained, security-focused
approach to lifecycle management.

2 https:/ /safecode.org/wp-content/uploads/2018/03/SAFECode_Fundamental_Practices_for_Secure_Software_Development_March_2018.pdf

3 https:/ / resources.sei.cmu.edu/asset_files/Webinar/2014_018_100_295971.pdf

4 BSA | The Software Alliance

The BSA Framework for Secure Software: A New Approach to Securing the Software Lifecycle

Other models exist for informing or assessing
software security. Some of these models, including
SAFECode’s Fundamental Practices for Secure Software
Development, the Software Assurance Maturity Model,
and various secure software development lifecycle
methodologies, serve as important starting points
for the Framework described in this document. They
provide detailed guidance, informed by broad industry
best practices, on a wide range of considerations
organizations should address to maximize their ability
to produce secure software in a verifiable, repeatable,
transparent manner. However, in many cases, these
guidance documents lack specificity and are primarily
targeted toward organizations, focusing almost
exclusively on organizational approaches, processes,
and methodologies that collectively constitute the
input of software development. They offer limited
guidance on security considerations in relation to the
output of software development; that is, the software
product.

The Framework takes the approach of defining software
security by considering both input and output; that is, it
includes considerations of organizational processes that
guide how vendors approach the development and
maintenance of a software product as well as security
capabilities and considerations relevant to the product
itself. Moreover, it provides this guidance at a level of
detail that is specific enough to be measurable, without
compromising the flexibility necessary to ensure that all
organizations can tailor the guidance according to the
type, use, and associated risk of a software product.

The Framework is intended to apply to all types of
software. Yet, because of the tremendous diversity in
types of software, software development processes,
and risks, some security considerations will be more
relevant to certain types of software than others.
Moreover, organizations will vary in how they customize
approaches to achieving the outcomes described in
the Framework. The Framework is intended as a tool to
create a common language for discussions about how
software approaches security, enabling stakeholders
to hone in on the security outcomes most relevant
to the circumstances. Rather than serving as a box-
checking exercise, such a common language enables
organizations to describe how they approach a specific
security outcome or why that outcome may not be
applicable to their product.

Framework Basics

The Framework identifies best practices relating to
both organizational processes and product capabilities
across the entire software lifecycle. It is organized into
six columns: Functions, Categories, Subcategories,
Diagnostic Statements, Implementation Notes, and
Informative References.

Funct ions organize fundamental software security
activities at their highest level, consistent with the
software lifecycle. The Functions are:

SECURE DEVELOPMENT

Secure development addresses security in the phase
of software development when a software project
is conceived, initiated, developed, and brought to
market

SECURE CAPABILITIES

Secure capabilities identify key security
characteristics recommended for a software product

SECURE LIFECYCLE

Secure lifecycle addresses considerations for
maintaining security in a software product from its
development through the end of its life

Categories divide a Function into distinct
considerations and disciplines relevant to the Function.
Many Categories are fundamentally interwoven with
other Categories; for example, the “ Vulnerability
Management” and “ Vulnerability Notification and
Patching” Categories are conceptually closely related,
as successful vulnerability management necessarily
involves vulnerability notification and patching.
However, the Categories seek to distill best practices
into distinct subjects or disciplines; in this example,
“ Vulnerability Management” provides guidance
for organizational processes to identify, prioritize,
and mitigate vulnerabilities, whereas “ Vulnerability
Notification and Patching” identifies best practices for
developing and issuing patches, mitigations, and
notifications to customers. Categories within the same

www b. sa o. rg 5

The BSA Framework for Secure Software: A New Approach to Securing the Software Lifecycle

By “ software development organizat ions,” the Framework intends to address all parts of an

organizat ion involved in the design, development, deployment , and maintenance of software,

recognizing that each organizat ion must determine how it can assign roles and responsibilit ies to

most effect ively achieve desired securit y outcomes.

Function may involve different communities of practices
within the software development organization; for
example, “ Secure Coding” practices will may be most
relevant to a different part of a software development
team than those members responsible for “ Supply
Chain Risk Management” practices.

Subcategories further divide a Category into distinct,
unitary concepts that express identified software
security best practices.

Diagnost ic Statements identify specific, verifiable
outcomes. They provide a set of results that help
support achievement of the outcomes in each
Category. Diagnostic Statements are not intended
as an exhaustive list of best practices, but as a set of
desired outcomes that are universally relevant, to the
maximum extent possible, to enhancing security across
all classes and types of software. The Framework does
not intend that every Diagnostic Statement will apply to
every development environment or software product.
Instead, through an examination of risk, software
development organizations will apply the Diagnostic
Statements appropriate for their environment and
product, and identify cases in which Diagnostic
Statements are inapplicable or irrelevant. This approach
is consistent with other risk-based frameworks that seek
to encourage and guide secure activities while avoiding
becoming simple checklists.

Implementat ion Notes provide additional
information, where necessary, such as examples of
how organizations may achieve security outcomes
described in the Diagnostic Statements, interpretations
of how Diagnostic Statements may apply in different
development environments, and guidance on aligning
implementation with risk.

Informat ive References are additional resources
that identify and describe best practices, guidelines,
or further information for the implementation of an
associated Diagnostic Statement. They may describe

methods for achieving the described outcome, provide
technical specifications or related best practices, and
offer further clarity and specificity on the security
benefits of the described outcome. Informative
References include internationally recognized technical
standards, best practice manuals and guidelines,
and references to Common Weakness Enumerators
(CWEs). A current list of CWEs is maintained at https:/ /
cwe.mitre.org/. In some cases, multiple standards
may offer alternative approaches to achieve similar
outcomes. Similarly, CWE references are drawn
from a community-developed taxonomy of software
weaknesses that serves as a common language for
describing weaknesses and provides a baseline for
identification, mitigation, and prevention of such
weaknesses. Numerous CWE references may be related
in some form to a specific Diagnostic Statement; the
Framework attempts to identify the most relevant
weaknesses resulting when the Diagnostic Statement
is incompletely or improperly addressed. In all cases,
Informative References are illustrative and are not
intended to be either exhaustive or prescriptive.

The Framework’s Subcategories and Diagnostic
Statements are often focused on the individuals and
team that actually develop software. In practice,
entities developing software are complex organizations
that often include separate software development
teams that interact with security teams, corporate
governance structures, and external requirements,
each of which play key roles in driving the security
outcomes the Framework describes. By “ software
development organizations,” the Framework intends to
address all parts of an organization involved in the
design, development, deployment, and maintenance
of software, recognizing that each organization must
determine how it can assign roles and responsibilities
to most effectively achieve desired security outcomes.

6 BSA | The Software Alliance

The BSA Framework for Secure Software: A New Approach to Securing the Software Lifecycle

Many elements of the Framework are intent ionally st ructured to provide software development

organizat ions with the flexibility to tailor their approaches based on the risk profi le of the

product .

Risk informs the Framework throughout its three
functions and is intended to guide software
development organizations and vendors to address
security considerations in operational processes and
product security capabilities according to the level of
risk associated with the product.

For example, consider the first Subcategory articulated
in the Framework which reads: “ Threat modeling and
risk analysis are employed during software design to
identify threats and potential mitigations.” This risk
analysis is designed to guide software development
organizations toward adopting the security controls
most appropriate to the type and uses of their
products. Understanding of the risk subsequently
informs the development of a plan to address security
considerations in the software’s development and
deployment.

Outcome-Focused.

The Framework communicates best practices in their
most detailed form through Diagnostic Statements
that identify specific, measurable outcomes. These
statements are intended to be neutral with respect to
coding language, development process, and technical
approach. Rather than dictating specific security
techniques, the Framework focuses on the outcomes
software development organizations and vendors
ideally should achieve to enhance the security profile
of the software.

Flexible.

Software development as a discipline is constantly
evolving based on innovations in efficiency and
management, emerging customer demands, new
approaches to coding languages or software
development tools, and technical breakthroughs.
Moreover, cybersecurity requires constant innovation
to keep pace with changing threats. Any approach to
software security must be flexible enough to enable
software developers to develop new approaches to
new challenges, and to deliver innovative products to
the customers who depend on them.

The Framework approaches this vital principle by
ensuring that it specifies outcomes that are neutral
with regard to coding language, development process,
and technical approach. Similarly, the Framework
recognizes that some Diagnostic Statements may be
more important to some organizations than others.
For example, companies securing SaaS products will
find statements relating to securing containers, such as
TC.1-6, more applicable to their software development
environment than businesses providing mostly out-of-
the-box software. Likewise, organizations developing
out-of-the-box software may find Diagnostic
Statements relating to anti-tamper techniques, like
SM.4-1, more useful. The Framework is structured in a
way such that each Diagnostic Statement is intended
to maintain flexibility while remaining applicable to
software of all types, languages, and development
processes.

Many elements of the Framework are intentionally
structured to provide software development
organizations with the flexibility to tailor their
approaches based on the risk profile of the product.
For example, the “ Support for Identity Management
and Authentication (SI)” category recognizes that
not all software products will require an identity
management and authentication mechanism but
includes clear guidelines for those that do. It directs
that software “ avoids hard-coded passwords” and
“ avoids authentication mechanisms that allow
insufficiently complex passwords, insufficient password
aging management, unlimited log-on attempts,
commonly used password topologies, or unverified
password changes.” For some software products, these
guidelines will mean adopting strong identity
management and authentication mechanisms,
such as multi-factor authentication, single sign-on
technologies, and log-on limits. For others, they will
mean ensuring that third-party identity management
and authentication tools meet those guidelines before
they are incorporated. For still others, they will mean
validating that such measures are not needed based on
the product’s risk and architecture.

8 BSA | The Software Alliance

The BSA Framework for Secure Software: A New Approach to Securing the Software Lifecycle

EX A M PLE

Prevent ing SQL Inject ion At tacks.

Hackers may use SQL injection — a code injection technique in which malicious SQL statements are
inserted into an entry field for execution — to compromise the confidentiality, integrity, and/or availability
of data used in a software program. SQL injection attacks are particularly common in database-driven
applications and are among the common types of malicious cyber activity.

Concatenation of untrusted data with string constants (string concatenation, or the combining of multiple
strings of untrusted data into a single string) is a common and dangerous weakness that SQL injection
attacks can take advantage of. To mitigate the risk of SQL injection attacks, the Framework includes the
following diagnostic statements in the Secure Coding category of the Secure Development function:

SC.3-1. Software avoids, or includes documented mit igat ions for, known securit y
vulnerabilit ies in included funct ions and libraries.

SC.3-2. Software development organizat ions validate input and output to mit igate
common vulnerabilit ies in software.

By focusing on secure outcomes, the Framework avoids mandating specific technical approaches to
structuring SQL statements, such as prescribing certain stored procedures or whitelisting techniques.
SQL statements can be created and parameterized using many different programming languages,
libraries, and frameworks; the Framework establishes clear security outcomes that are targeted and
meaningful but retains the flexibility to enable its achievement through each of these differing languages,
libraries, and frameworks. In each case, the outcome specified in the diagnostic statement is linked
to references to informative material that provides further detail on achieving the outcome, including
references specifying techniques to prevent SQL injection attacks.

Not all software products are at risk of SQL injection attacks, and not all software products utilize dynamic
SQL statements. The security outcomes specified by the Framework are met equally by the software
product that develops properly parameterized SQL statements as by the software product that excludes
dynamic SQL statements altogether. The appropriate approach to meeting the specified security
outcome will be based on a risk-informed software design and security architecture.

Adaptable.

In today’s development context, software is constantly
changing. Many products are continually updated
with new features and additional security measures
long after their original market deployment. For that
reason, software security must be conceptualized in a
way that is adaptable to this lifecycle, as well as to the
constant innovation of new technologies, processes,
and standards in the software industry. For that
reason, approaches to software security that mandate

specific technical measures or that endeavor to subject
software products to batteries of tests that assess
security at a single point in time will fail to keep pace
with the constant evolution of software. Instead, this
Framework provides a tool to assess the characteristics
of software security throughout a software product’s
lifecycle, using outcome-focused diagnostic statements
that are adaptable to diverse and evolving technical
approaches.

www b. sa o. rg 9

The BSA Framework for Secure Software: A New Approach to Securing the Software Lifecycle

EX A M PLE

Vulnerability Advisories to SaaS Customers.

To ensure that users are properly informed of relevant security information associated with software
updates, the Vulnerability Not ificat ion and Patching category of the Secure Lifecyle function includes
the following diagnostic statement:

VN.3-1. Users are not ified of a significant security issue when a
remediat ion is in place for each supported version of the affected product .

As important as such notifications can be when users are asked to install updates that could potentially
have broader impacts to their own devices or systems, it may not be feasible for notifications to
accompany every software update in some contexts. For example, many SaaS vendors operate in a
continuous delivery environment, meaning software is produced in short cycles of testing, staging, pre-
production, and production. Because SaaS is a web-based model in which software is maintained on
remote servers rather than installed on user devices, SaaS software updates are also generally not
installed on user devices. Continuous integration and continuous delivery methodologies make it
possible to quickly deploy new versions of, or security updates to, a SaaS application without customer
disruptions or losses of service. Sophisticated SaaS vendors may deploy dozens, or even hundreds, of
software updates to an application each day.

By focusing on information relevant to significant security issues, the Framework avoids onerous
notification requirements, which may be impossible to meet in a SaaS environment, while ensuring
customers are well-informed regarding the security of their products and services.

Aligned with Internat ionally Recognized
Standards.

Internationally recognized technical standards provide
widely vetted, consensus-based information and
guidance for defining and implementing effective
approaches to cybersecurity and facilitate common
approaches to common challenges, thus enabling
collaboration and interoperability. Industry leaders
have developed a range of international standards
and best practices for secure-by-design software
development. To ensure international interoperability
and express consensus best practices, the Framework
seeks to align, to the greatest extent possible, with
internationally recognized technical standards wherever
they exist. Currently, the most notable example
relevant to secure software development is the ISO/
IEC 27034 series of standards, which sets out guidance
on “ integrating security seamlessly throughout the
lifecycle” of software applications.

Implement ing the Framework for
Secure Software

The Framework is designed to support the systematic
processes used by software development organizations
to identify, assess, and minimize cybersecurity risk
throughout the lifecycle of software products. Using
the Framework as a cybersecurity risk management
tool, an organization can establish a holistic secure
development lifecycle that identifies likely risks,
enables conscientious decisions about risk mitigation
and risk tolerance, improves software quality, and
prepares the organization to address emerging security
considerations throughout the software’s lifecycle.

10 BSA | The Software Alliance

The BSA Framework for Secure Software: A New Approach to Securing the Software Lifecycle

Using the Framework as a cybersecurity risk management tool, an organizat ion can establish

a holist ic secure development lifecycle that ident ifies likely risks, enables conscient ious

decisions about risk mit igat ion and risk tolerance, improves software quality, and prepares the

organizat ion to address emerging securit y considerat ions throughout the software’s lifecycle.

Specifically, software development organizations may
find the Framework to be a useful tool for the following
purposes, among others:

» Development process guidance. A software
development organization should publish definitive
direction on the policies and processes that
development of a new software product is expected
to follow in order to ensure that all involved
stakeholders understand roles, responsibilities, and
expectations. Organizations may choose to amend
software development processes and process
guidance to ensure the elements of the Framework
are accounted for throughout the product
development lifecycle.

» Training and awareness. A software development
organization may consider developing internal
training and education programs to build a culture
of security and to ensure that stakeholders are
trained in responsibilities and methodologies
appropriate to their roles in the software
development lifecycle. Organizations may choose to
incorporate elements of the Framework into internal
training and awareness modules. In addition, the
Framework may provide a useful tool for educating
executives about how security is addressed in the
development process, how resources are aligned to
security considerations, and how individual products
incorporate cybersecurity.

» Tracking and assessment . Software development
organizations may wish to use the Framework as
a tool to track a product as it is developed or to
assess its security profile according to concrete
metrics. For example, software development
lifecycles often establish release gates that require
a project to meet an established measure or
obtain a waiver before advancing; elements of
the Framework may be incorporated into release
gate criteria. Additionally, the Framework may help
an organization identify metrics that define and
measure software security for its products.

» Vendor relat ions. A software development
organization should implement measures to ensure
the integrity of its supply chain. Organizations
may choose to use the Framework to guide
purchasing decisions and/or the development of
vendor contracts that ensure third-party software
components will not jeopardize the organization’s
security objectives and compliance requirements.

» Public securit y narrat ive. Software development
organizations may wish to communicate information
about a product’s security features and its approach
to mitigating cybersecurity risk to a public
audience. The Framework may be useful in enabling
organizations to build a narrative about their secure
development lifecycle and product security.

www b. sa o. rg 11

The BSA Framework for Secure Software: A New Approach to Securing the Software Lifecycle

The Framework does not intend that every Diagnostic Statement will apply to every
development environment or software product. Software development organizations will
identify and apply the Diagnostic Statements appropriate for their environment and product
based on analysis of risk.

Comments on
Category Subcategory Diagnost ic Statement Implementat ion

Relevant Standards and
Informat ive Resources

SECURE DEVELOPMENT

Secure Coding
(SC)

ISO/IEC 27034; OWASP
Application Security
Verification Standard;
SAFECode “ Fundamental
Practices” ; SAFECode
“ Tactical Threat Modeling” ;
SAMM; BSIMM; CWSS;
CAPEC; OWASP Threat
Modeling Cheat Sheet

ISO/IEC 27034; SAFECode
“ Fundamental Practices” ;
SAMM; CWSS; CAPEC;
OWASP Threat Modeling
Cheat Sheet

ISO/IEC 27034; SAFECode
“ Fundamental Practices” ;
SAMM; CWSS; CAPEC;
OWASP Threat Modeling
Cheat Sheet; SAFECode
“ Tactical Threat Modeling”

ISO/IEC 27034; SAFECode
“ Fundamental Practices” ;
SAMM; CWSS; CAPEC;
OWASP Threat Modeling
Cheat Sheet

12 BSA | The Software Alliance

III. BSA Framework for Secure Software

SC.1. Threat
modeling and
risk analysis are
employed during
software design
to identify threats
and potential
mitigations.

SC.1-1. Software
development
organizations
document likely threats.

Threat modeling attempts
to identify and prioritize the
potential threats against a
software product or component
in order to guide software
development decisions that
defend against identifie d
threats. Some software
developers work in accordance
with “ zero trust” principles,
which assume a pervasively
hostile environment. Yet, even
with zero trust approaches,
threat modeling is important
for identifying sensitive data
and prioritizing threats for
mitigation. Developers should
conside r the risk profile of the
product when determining the
level of detail to provide in
such documentation.

SC.1-2. Threats are
rated and prioritized
according to risk.

SC.1-3. Software
development
organizations
apply common
threat modeling
methodologies.

SC.1-4. Compensating
controls are identified
and mapped to threats.

The BSA Framework for Secure Software: A New Approach to Securing the Software Lifecycle

Comments on
Category Subcategory Diagnost ic Statement Implementat ion

Relevant Standards and
Informat ive Resources

SECURE DEVELOPMENT

Secure Coding
(SC)
(continued)

ISO/IEC TS 17961; SEI
CERT C Coding Standard;
SEI CERT C++ Coding
Standard; SEI CERT Java
Coding Standard; NCSC

SAFECode “ Fundamental
Practices” ; CWE-21; CWE-
22; CWE-35; CWE-36;
CWE-37; CWE-38; CWE-39;
CWE-40

NIST NVD; CWE/SANS
Top 25 Most Dangerous
Software Errors; OWASP
Top 10; CWE-1006; CWE-
242

SAFECode “ Fundamental
Practices” ; OWASP Input
Validation Cheat Sheet;
CWE-20; CWE-89; CWE-
119; CWE-120; CWE-183;
CWE-184; CWE-242; CWE-
625; CWE-675; CWE-805

SAFECode “ Fundamental
Practices” ; CWE-79

SAFECode “ Fundamental
Practices” ; CWE-265

DoD-PPP

www b. sa o. rg 13

SC.2. Software
is developed
according to
recognized,
enforceable
coding standards.

SC.2-1. Standards are
formally ide ntified and
documented.

SC.2-2. Software uses
canonical data formats.

SC.3. The
software is secure
against known
vulnerabilities,
unsafe functions,
and unsafe
libraries.

SC.3-1. Software
avoids, or includes
documented
mitigations for, known
security vulnerabilities
in included functions
and libraries.

Software should avoid known
vulnerabilities to the greatest
extent possible. In some
instances, there may be reasons
for software to incorporate
functions or libraries known
to include vulnerabilities;
such functions or libraries
should only be incorporated
when developers include
documented mitigations that
ensure the vulnerabilities are
not exploitable.

SC.3-2. Software
validates input and
output to mitigate
common vulnerabilities
in software.

SC.3-3. Software
encodes data and/
or uses anti-cross site
scripting (XSS) libraries.

SC.4. Standard
software assurance
measures are
employed in
the software
architecture and
design.

SC.4-1. The software
employs segmentation
through sandboxing,
containerization, or
similar methodologies.

SC.4-2. The software
employs fault isolation
mechanisms.

The BSA Framework for Secure Software: A New Approach to Securing the Software Lifecycle

Comments on
Category Subcategory Diagnost ic Statement Implementat ion

Relevant Standards and
Informat ive Resources

SECURE DEVELOPMENT

Secure Coding
(SC)
(continued)

Test ing and
Verificat ion
(TV)

DoD-PPP; OWASP
Application Security
Verification Standard

SAFECode “ Fundamental
Practices” ; CWE-129; CWE-
131; CWE-190; CWE-680;
CWE-805

OWASP Attack Surface
Analysis Cheat Sheet,
SAMM

SAFECode “ Fundamental
Practices” ; OWASP Attack
Surface Analysis Cheat
Sheet

SAFECode “ Fundamental
Practices” ; BSIMM; SAMM;
OWASP Testing Guide;
OWASP Code Review
Guide

SAFECode “ Fundamental
Practices” ; OWASP Testing
Guide

SAFECode “ Fundamental
Practices”

ISO/IEC 27034; SAFECode
“ Fundamental Practices” ;
SAMM; BSIMM; OWASP
Testing Guide

SAFECode “ Fundamental
Practices” ; SAMM

ISO/IEC 27034; SAFECode
“ Fundamental Practices” ;
SAMM; BSIMM; OWASP
Testing Guide

14 BSA | The Software Alliance

SC.4. Standard
software assurance
measures are
employed in
the software
architecture and
design.

SC.4-3. The software
employs system
element isolation
mechanisms.

SC.4-4. Software
uses robust integer
operations for dynamic
memory allocations and
array offsets.

Where errors in integer
computation cannot result in
security-relevant errors, use of
robust integer operations may
not be necessary.

TV.1. Analysis
and validation
of the software
attack surface is
conducted.

TV.1-1. Attack surface
is identified and
mapped.

TV.1-2. Analysis is
informed by threat
model(s) and risk
analysis.

TV.2. Code review
using manual and/
or automated tools
is conducted.

TV.2-1. Code review
release gates are
established to guide
software development.

To the extent possible,
automated tools should be
implemented and integrated
with the software development
process to ensure rigor and
consistency. Manual tools can
be substituted in cases where
automation isn’t feasible.

TV.3. A
comprehensive
test plan for
testing the
functionality and
security of software
is established.

TV.3-1. Test plan
is based on threat model
(s) and risk analysis.

TV.3-2. The software
is tested in a least
privilege environment.

TV.4. Software
security controls
are properly tested
with appropriate
techniques.

TV.5. Software
is subjected to
adversarial security
testing techniques.

TV.5-1. Software
development
organizations establish
security testing release
gates.

TV.5-2. Software
is subjected to
penetration testing.

The BSA Framework for Secure Software: A New Approach to Securing the Software Lifecycle

Comments on
Category Subcategory Diagnost ic Statement Implementat ion

Relevant Standards and
Informat ive Resources

SECURE DEVELOPMENT

Process and
Documentat ion
(PD)

SAMM; Microsoft SDL

SAMM; Microsoft SDL

SAFECode “ Fundamental
Practices” ; BSIMM

Microsoft SDL

SAFECode “ Fundamental
Practices” ; NIST IR 7622

www b. sa o. rg 15

PD.1. Secure
development
processes are
documented
throughout
software
development.

PD.1-1. Security
requirements for the
software are gathered
from stakeholders and
documented.

Developers should consider
the risk profile of the product
when determining the level
of detail to provide in such
documentation.

PD.1-2. Security
guidance for the
development of
the software is
documented.

PD.1-3. Security
guidance for the
development of
software is updated to
re fle ct the results of
root cause analyses of
new vulnerabilities.

PD.1-4. Security
documentation
outlining best practices
for software use by end-
users and developers
is made available
electronically.

PD.1-5. Testing and
validation activities,
including results, are
documented.

PD.1-6. Software
development
organizations maintain
an up-to-date product
history that documents
changes to elements
and configurations.

Depending on the
development process, software
developers may opt to maintain
changelogs or change histories
manually, or use automated
tools such as project
management software, source
code management tools, and
configuration management
tools. It is increasingly
recognized as a best practice
for software developers to
use automated tools that are
capable of tracking the origin
of code (date, time, rationale,
responsible individual) on a
line-by-line basis. Developers
should consider the risk
profile of the product when
determining the level of
detail to provide in such
documentation.

The BSA Framework for Secure Software: A New Approach to Securing the Software Lifecycle

Comments on
Category Subcategory Diagnost ic Statement Implementat ion

Relevant Standards and
Informat ive Resources

SECURE DEVELOPMENT

Process and
Documentat ion
(PD)

Supply Chain
(SM)

Microsoft SDL

BSIMM; SAMM

NIST IR 7622; NIST SP
800-53

SAFECode “ Software
Supply Chain Integrity
Framework” ; BSIMM; NIST
Interagency Report 7622;
NIST SP 800-53; CWE-505;
CWE-506; CWE-507; CWE-
510; CWE-511

SAFECode “ Software
Supply Chain Integrity
Framework” ; NIST IR 7622;
NIST SP 800-53; CWE-505;
CWE-506; CWE-507; CWE-
510; CWE-511

SAFECode “ Software
Supply Chain Integrity
Framework” ; NIST IR 7622;
NIST SP 800-53; CWE-505;
CWE-506; CWE-507; CWE-
510; CWE-511

16 BSA | The Software Alliance

PD.2. Software
development
personnel are
accountable for
software security.

PD.2-1. A security
advisor is assigned
to the software
development team.

PD.2-2. Software
development personnel
are trained on identified
coding standards
and role-spe cific best
practices.

SM.1. Software
development
is informed by
supply chain risk
management.

SM.1-1. An
organizational supply
chain management
plan and processes
for identification and
reporting of supply
chain incidents are
established.

SM.2. Approved
acquisition
measures are in
place to ensure
the visibility,
traceability, and
security of third-
party components.

SM.2-1. Information
about providers of third-
party components is
identifie d and collected.

Relevant information may
include the provider’s
processes for controlling access
to software components,
product development and
testing standards, supply chain
risk management practices,
development environment,
and vulnerability management
processes.

SM.2-2. Software
development
organization employs
measures to document
and, to the extent
feasible, trace to their
original source all
third-party components
directly acquired and
incorporated into
the software by the
developer.

SM.2-3. To the
maximum feasible
through the use of
manual and automated
technologies,
subcomponents
integrated in third-
party components
are documented,
and their lineage and
dependencies traced.

The BSA Framework for Secure Software: A New Approach to Securing the Software Lifecycle

Comments on
Category Subcategory Diagnost ic Statement Implementat ion

Relevant Standards and
Informat ive Resources

SECURE DEVELOPMENT

Supply Chain
(SM)
(continued)

SAMM; BSIMM; NIST IR
7622; NIST SP 800-53

NIST IR 7622

NIST IR 7622

SAMM; BSIMM; NIST IR
7622; NIST SP 800-53

BSIMM; NIST IR 7622

NIST IR 7622; BSIMM; NIST
SP 800-53

www b. sa o. rg 17

SM.2. Approved
acquisition
measures are in
place to ensure
the visibility,
traceability, and
security of third-
party components.

SM.2-4. Security
requirements are
incorporated into
contracts, policies, and
standards for vendors
supplying software
components.

SM.3. Supply
chain data
— including
information about
software elements,
design, testing,
evaluation, threat
assessments,
delivery processes,
and agreements
language — is
protected against
unauthorized
disclosure, access,
modification,
dissemination,
destruction, and
use.

SM.3-1. Supply chain
data is protected at
rest.

SM.3-2. Supply chain
data is protected
in transit against
unauthorized access.

SM.4. Software
incorporates
measures
to prevent
counterfeiting and
tampering.

SM.4-1. Software
includes mechanisms
to ensure the integrity
of the software, such
as code-signing, anti-
reverse engineering,
or anti-tamper
mechanisms.

SM.4-2. Software
includes supplier
source certification
or authentication
indicators and protects
those indicators
against tampering and
counterfeiting.

SM.4-3. Identification
markers unique to
the software ’s specific
version are applied to
each delivered product.

The BSA Framework for Secure Software: A New Approach to Securing the Software Lifecycle

Comments on
Category Subcategory Diagnost ic Statement Implementat ion

Relevant Standards and
Informat ive Resources

SECURE DEVELOPMENT

Supply Chain
(SM)
(continued)

Tool Chain (TC)

ISO/IEC 19770-2; SPDX
Version 2.1; NIST IR 8060

NIST IR 7622

SAFECode “ Fundamental
Practices” ; Microsoft SDL;
OWASP C-Based Tool
Chain Hardening Cheat
Sheet; CWE-691; CWE-908

NCSC

Microsoft SDL; OWASP
Development Guide; CWE-
1038

Microsoft SDL; OWASP
Development Guide; CWE-
733; CWE-1038

Microsoft SDL; OWASP
Development Guide; CWE-
1038

BSIMM

18 BSA | The Software Alliance

SM.5. The
software is
identifiab le
through clear,
discoverable
information
communicated
in a standardized
format.

SM.5-1. The software
includes descriptive
information about the
software’s identity.

Descriptive information should
generally include the software’s
name, creator, version,
licensing details and, where
possible, information about the
software’s dependencies.

SM.6. Deployment
procedures ensure
that the proper
usages of software
are established.

SM.6-1. The software
includes mechanisms to
reduce the likelihood
that it is installed on
unauthorized hardware
or by unauthorized
users, such as validating
code-signing,
authentication, or
credentialing.

TC.1. Software is
developed using
tools configured
for security.

TC.1-1. Software
is developed using up-
to-date versions of all
tools and platform
elements within
the development
environment.

TC.1-2. Development
frameworks used
in developing
software use secure
configurations.

TC.1-3. Compilers are
configure d to preve nt
common vulnerabilities
and weaknesses.

TC.1-4. Compilers are
configure d to avoid
unintentional removal
or modification of
security-critical code.

TC.1-5. Compilers
are configured to
automatically add
defense code.

TC.1-6. Containers
and other virtualization
technologies used
in deploying the
software use secure
configurations.

The BSA Framework for Secure Software: A New Approach to Securing the Software Lifecycle

Comments on
Category Subcategory Diagnost ic Statement Implementat ion

Relevant Standards and
Informat ive Resources

SECURE DEVELOPMENT

Ident it y
and Access
Management
(IA)

IA.2. Policies to
control access to
data and processes
for all users
and operators
are developed,
documented,
and applied
throughout the
development
environment.

IA.2-3. Unauthorized
changes or deletions
to code, development
artifacts, and tools are
prevented and logged.

NCSC: NIST SP 800-53;
NIST IR 7622

NCSC

SAMM; DHS/DACS

SAMM; DHS/DACS; DoD-
PPP

OWASP Logging Cheat
Sheet; DHS/DACS; NIST IR
7622; CWE-778

www b. sa o. rg 19

IA.1. Throughout
the supply chain
and product
lifecycle,
the software
development
environment
unique ly identifie s
and authenticates
users and
operators.

IA.1-1. Strong
authentication methods
are required for access
to the development
environment.

Strong authentication is
generally understood to
describe mechanisms that
require authentication factors
from at least two of three
categories (knowledge, or
something a user knows;
ownership, or something
a user has; and inherence,
or something a user is), but
may also utilize contextual
information (e.g., geolocation
or device information) and
other factors to confirm a
user’s identity. Diagnostic
Statements in the IA Category
address identity and
access management in the
development environment.
See the SI and AA Categories
for information regarding
security capabilities in software
products themselves.

IA.1-2. User and
operator credentials
are stored securely and
revoked or disabled
when no longer
needed.

IA.2-1. Specific access
controls for creation,
read access, update,
deletion, and execution
are applied based on
clearly identified and
approved user and
operator roles.

IA.2-2. Access controls
are set for individual
users and operators
that provide only the
necessary privileges
required to perform an
assigned task and only
for the necessary time
required to perform it.

The BSA Framework for Secure Software: A New Approach to Securing the Software Lifecycle

Comments on
Category Subcategory Diagnost ic Statement Implementat ion

Relevant Standards and
Informat ive Resources

SECURE CAPABILITIES

Support
for Ident it y
Management
and
Authent icat ion
(SI)

SI.2. The software
supports strong
identity
management and
authentication.

SI.2-2. The software
is interoperable with
applicable common
industry standards for
identity management
and authentication.

ISO/IEC 9798; OWASP
Authentication Cheat
Sheet; CWE-259; CWE-798

ISO/IEC 9798; OWASP
Authentication Cheat
Sheet; NIST SP 800-63;
CWE-521; CWE-262; CWE-
263; CWE-620; CWE-308

NCSC

OWASP Password Storage
Cheat Sheet

ISO/IEC 9798; SAFECode
“ Fundamental Practices”

OAuth 2.0; OIDC; SAML
2.0; WS-FED; UAF; U2F;
SAFECode “ Fundamental
Practices”

20 BSA | The Software Alliance

SI.1. The software
avoids architectural
weaknesses that
create risk of
authentication
failure.

SI.1-1. The software
avoids hard-coded
passwords.

SI.1-2. Software source
code does not contain
secrets.

Secrets may include credentials
or keys.

SI.1-3. Authentication
mechanisms used by
the software employ
typical security
techniques and avoid
common security
weaknesses.

Typical techniques and
common weaknesses are
rapidly evolving; software
development organizations
should stay abreast of current
best practices. Current
common security weaknesses
include allowing insufficiently
complex passwords, insufficient
password aging management,
unlimited log-on attempts,
commonly used password
topolog ies, and unve rified
password changes.

SI.1-4. The software
does not store
sensitive authentication
information, which may
include passwords or
keys, in source code
or publicly accessible
infrastructure.

SI.1-5. Any passwords
or sensitive
authentication
information stored by
the software is stored in
accordance with current
best practices.

Best practices for password
storage are rapidly evolving;
software development
organizations should stay
abreast of current best
practices.

SI.2-1. The software
implements features,
configurations, and
protocols that establish
or support standard,
tested authentication
services.

The BSA Framework for Secure Software: A New Approach to Securing the Software Lifecycle

Comments on
Category Subcategory Diagnost ic Statement Implementat ion

Relevant Standards and
Informat ive Resources

SECURE CAPABILITIES

Support
for Ident it y
Management
and
Authent icat ion
(SI)
(continued)

Patchability
(PA)

OWASP Secure Coding
Practices

NTIA “ Voluntary
Framework for Enhancing
Update Process Security” ;
NIST SP 800-147; CWE-924

NTIA “ Voluntary
Framework for Enhancing
Update Process Security”

NTIA “ Voluntary
Framework for Enhancing
Update Process Security”

Encrypt ion (EN) EN.1. Software
is developed in
accordance with an
encryption strategy
that defines what
data should be
encrypted and
which encryption
mechanisms
should be used.

EN.1-3. Software
does not expose
sensitive data upon
failure of encryption
mechanisms.

SAFECode “ Fundamental
Practices” ; OWASP
Cryptographic Storage
Cheat Sheet; NIST SP 800-
57; CWE-311

OWASP Secure Coding
Practices; CWE-636; FIPS
140-2

www b. sa o. rg 21

SI.2. The
software supports
strong identity
management and
authentication.

SI.2-3. Authentication
controls fail securely.

When authentication controls
fail securely, they prevent
access by unauthenticated
users even after encountering
an error.

PA.1. Software
is capable of
receiving secure
updates and
security patches.

PA.1-1. Software is
capable of validating
the integrity of a
transmitted patch or
update.

The Patchability category refers
to technical aspects relating
to the ability of the software
to receive secure updates
and patches. Activities of
software developers relating
to the development and
dissemination of updates and
patches are discussed in the
Secure Lifecycle function.

PA.1-2. Software
includes a mechanism
to notify end users
of patch or update
installation.

PA.1-3. Software
reverts to a known-
good state upon failed
installation of updates
or security patches.

EN.1-1. Software
enables the use
of encryption to
protect sensitive data
from unauthorized
disclosure.

EN.1-2. Software
enables the use of
encryption to protect
the software itself from
tampering.

The BSA Framework for Secure Software: A New Approach to Securing the Software Lifecycle

Comments on
Category Subcategory Diagnost ic Statement Implementat ion

Relevant Standards and
Informat ive Resources

SECURE CAPABILITIES

Encrypt ion (EN)
(continued)

EN.2. Software
avoids weak
encryption.

EN.2-5. Encryption
capabilities employed
by the software are
configured to select
strong cipher modes
and exclude weak
ciphers by default.

ISO/IEC 18033-1; ISO/IEC
19790; FIPS 140-2; FIPS
186-4; FIPS 197; FIPS 202;
SAFECode “ Fundamental
Practices” ; OWASP
Cryptographic Storage
Cheat Sheet; NIST SP 800-
57; CWE-325; CWE-326;
CWE-327

ISO/IEC 19772; OWASP
Cryptographic Storage
Cheat Sheet; NIST SP 800-
57; CWE-326; CWE-327

ISO/IEC 18033-1; ISO/IEC
19790; FIPS 140-2; FIPS
186-4; FIPS 197; FIPS 202;
SAFECode “ Fundamental
Practices” ; OWASP
Cryptographic Storage
Cheat Sheet; NIST SP
800-57; CWE-326; CWE-
327; CWE-330; CWE-331;
CWE-338

ISO/IEC 18033-1; ISO/IEC
19790; FIPS 140-2; FIPS
186-4; FIPS 197; FIPS 202;
SAFECode “ Fundamental
Practices” ; OWASP
Cryptographic Storage
Cheat Sheet; NIST SP
800-57; CWE-326; CWE-
327; CWE-330; CWE-331;
CWE-338

ISO/IEC 18033-1; ISO/IEC
19790; FIPS 140-2; FIPS
186-4; FIPS 197; FIPS 202;
SAFECode “ Fundamental
Practices” ; OWASP
Cryptographic Storage
Cheat Sheet; NIST SP
800-57; CWE-326; CWE-
327; CWE-330; CWE-331;
CWE-338

22 BSA | The Software Alliance

EN.2-1. Software
avoids custom
encryption algorithms
and implementations.

In unique circumstances when
a deve lope r identifie s a need
to use a custom algorithm or
implementation, the developer
should establish and document
a robust procedure to validate
the security of the custom
algorithm or implementation
prior to deployment.

EN.2-2. Software
enables the use
of authenticated
encryption.

EN.2-3. Encryption
employed by the
software enables strong
algorithms.

Standards for strong algorithms
change over time; in general,
strong algorithms will have
no structural weaknesses, will
maintain key size s of sufficient
length to defeat brute force
attacks, and will have been
standardized and deployed
across a reasonably sized user
base.

EN.2-4. Encryption
employed by the
software enables strong
key lengths.

Standards for strong key
lengths will change over time
based on advancements in
computing power and factoring
techniques; in general, strong
key lengths are of sufficient
length to ensure brute force
attacks are infeasible.

The BSA Framework for Secure Software: A New Approach to Securing the Software Lifecycle

Comments on
Category Subcategory Diagnost ic Statement Implementat ion

Relevant Standards and
Informat ive Resources

SECURE CAPABILITIES

Encrypt ion (EN)
(continued)

CWE-326; CWE-327; CWE-
330; CWE-331; CWE-338

ISO/IEC 18033-1; ISO/IEC
19790; FIPS 140-2; FIPS
186-4; FIPS 197; FIPS 202;
SAFECode “ Fundamental
Practices” ; OWASP
Cryptographic Storage
Cheat Sheet; NIST SP
800-57

ISO/IEC 18033-1; ISO/IEC
19790; FIPS 140-2; FIPS
186-4; FIPS 197; FIPS 202;
SAFECode “ Fundamental
Practices” ; OWASP
Cryptographic Storage
Cheat Sheet; NIST SP 800-
57; CWE-324

OWASP Cryptographic
Storage Cheat Sheet;
CWE-347

Authorizat ion
and Access
Cont rols (AA)

AA.1. Software
design reflects the
principle of least
privilege.

AA.1-2. Privileges are
set in a configuration
that is resistant to
unauthorized changes.

SAFECode “ Fundamental
Practices” ; DoD-PPD;
CWE-250; CWE-271; CWE-
272; CWE-274

SAFECode “ Fundamental
Practices” ; DoD-PPD;
CWE-250

www b. sa o. rg 23

EN.2. Software
avoids weak
encryption.

EN.2-6. Software is
configure d to disable or
prevent the use of weak
encryption algorithms
and key lengths.

It may be necessary for
software to support weak
encryption algorithms and
key lengths for reasons of
backward compatibility. Where
such support is required,
the implementation should
be carefully engineered and
thoroughly reviewed to ensure
that it does not allow an
attacker to bypass the default
or user selection of strong
encryption.

EN.3. Software
protects and
validates
encryption keys.

EN.3-1. Software
ensures that
cryptographic keys can
be securely stored and
managed, separate
from encrypted data.

EN.3-2. Software
includes a mechanism
to manage key and
certificate lifecycle s.

Mechanisms for managing key
and certificate lifecycles may
include use of third-party key
management systems.

EN.3-3. Software
includes a mechanism
to validate certificates.

Not all software uses
ce rtificates; however, it is
imperative that software that
does use ce rtificates is ab le
to validate the authenticity
of those certificates. This
diagnostic statement should
be applied consistent with the
encryption strategy described
in EN.1.

AA.1-1. The software
operates using only
those privileges or
permissions necessary
for software to run
correctly.

The BSA Framework for Secure Software: A New Approach to Securing the Software Lifecycle

Comments on
Category Subcategory Diagnost ic Statement Implementat ion

Relevant Standards and
Informat ive Resources

SECURE CAPABILITIES

Authorizat ion
and Access
Cont rols (AA)
(continued)

Logging (LO)

LO.2. Software
security incident
and event
information
logging
mechanisms are
implemented
securely.

LO.2-2. Logging
mechanisms
include anti-tamper
protections.

SAFECode “ Fundamental
Practices” ; CWE-285; CWE-
862; CWE-863

DHS/DACS

OWASP Secure Coding
Practices

SAFECode “ Fundamental
Practices” ; CWE-779

OWASP Secure Coding
Practices; OWASP Logging
Cheat Sheet; CWE-778;
CWE-223

SAFECode “ Fundamental
Practices” ; OWASP
Logging Cheat Sheet;
CWE-778

OWASP Secure Coding
Practices; OWASP Logging
Cheat Sheet

SAFECode “ Fundamental
Practices” ; OWASP
Logging Cheat Sheet

24 BSA | The Software Alliance

AA.1. Software
design re fle cts the
principle of least
privilege.

AA.1-3. An
authorization
strategy that applies
authorization policies,
access controls, and
design principles
to classes of data is
implemented in the
software.

AA.2. The
software’s
design supports
authorization and
access controls.

AA.2-1. The software
avoids functions that
enable unauthorized
privilege escalations.

AA.2-2. In the case of
failure, the software
does not grant access
to unauthorized or
unauthenticated users.

LO.1. Software
implements
logging of all
critical security
incident and event
information.

LO.1-1. Software
differentiates between
monitoring logs and
auditing logs.

Monitoring logs record data
relevant to analyzing usage and
performance, troubleshooting,
and informing ongoing
software development.
Auditing logs support analysis
of and response to security
events.

LO.1-2. Software is
capable of logging
all security-relevant
failures, errors, and
exceptions.

Software development
organizations should determine
what information is security-
relevant as part of threat-
modeling (see SC.1) and risk
assessment.

LO.1-3. Software is
capable of logging
timestamp and
identifying information
associated with security
incidents and events.

LO.2-1. Access to
logs is restricted to
authorized individuals.

The BSA Framework for Secure Software: A New Approach to Securing the Software Lifecycle

Comments on
Category Subcategory Diagnost ic Statement Implementat ion

Relevant Standards and
Informat ive Resources

SECURE CAPABILITIES

Logging (LO)
(continued)

Error and
Except ion
Handling (EE)

OWASP Secure Coding
Practices; OWASP Logging
Cheat Sheet; CWE-532

OWASP Secure Coding
Practices; OWASP Logging
Cheat Sheet; CWE-117

DHS/DACS; OWASP
Code Review Guide: Error
Handling; SAFECode
“ Fundamental Practices” ;
CWE-388; CWE-390; CWE-
391; CWE-396; CWE-397;
CWE-544

DHS/DACS; OWASP
Code Review Guide: Error
Handling; SAFECode
“ Fundamental Practices” ;
CWE-388; CWE-390; CWE-
391; CWE-396; CWE-397;
CWE-544

DHS/DACS; OWASP
Code Review Guide:
Error Handling; OWASP
Secure Coding Practices;
SAFECode “ Fundamental
Practices” ; CWE-209

DHS/DACS; CWE-636

CWE-636

www b. sa o. rg 25

LO.2. Software
security incident
and event
information
logging
mechanisms are
implemented
securely.

LO.2-3. Logs do
not store sensitive
information, such
as unnecessary
user information,
system details,
session identifie rs, or
passwords.

LO.2-4. Software
logging mechanisms
employ input validation
and output encoding.

EE.1. Software
integrates error
and exception
handling
capabilities.

EE.1-1. Software
identifies pred ictab le
exceptions and errors
that could occur during
software execution
and defines how the
software will handle
each instance.

EE.1-2. Software
defines how it will
handle unpredicted
exceptions and errors
and safeguards against
continued execution in
an insecure state.

EE.1-3. Notifications of
errors and exceptions
do not disclose
sensitive technical or
human information.

EE.2. Software
fails securely; if a
program is forced
to terminate
unexpectedly,
it shuts down
in a safe and
responsible
manner.

EE.2-1. Software is
designed to continue
operating in a
degraded manner until
a threshold is reached
that triggers orderly,
secure termination.

EE.2-2. In the case of
failure, software reverts
to secure default
states that preserve
confidentiality and
integrity.

The BSA Framework for Secure Software: A New Approach to Securing the Software Lifecycle

Comments on
Category Subcategory Diagnost ic Statement Implementat ion

Relevant Standards and
Informat ive Resources

SECURE LIFECYCLE

Vulnerability
Management
(VM)

ISO/IEC 29147; ISO/
IEC 30111; SAFECode
“ Fundamental Practices” ;
SAMM

SAFECode “ Fundamental
Practices” ; SAMM

ISO/IEC 30111; SAFECode
“ Fundamental Practices” ;
SAMM

ISO/IEC 30111; SAFECode
“ Fundamental Practices”

26 BSA | The Software Alliance

VM.1. The
vendor maintains
an up-to-date
vulnerability
management plan.

VM.1-1. The
vulnerability
management plan
outlines policies,
responsibilities, and
expectations for
both internal and
external stakeholders
throughout the
following phases
of vulnerability
management:
(1) the vendor’s
identification or receip t
of a vulnerability,
(2) verification of
the vulnerability,
(3) remediation or
mitigation of the
vulnerability, (4) release
of a solution, and (5)
post-release.

VM.1-2. The
vulnerability
management plan
addresses security
testing and vulnerability
identification
methodologies to be
applied throughout a
product’s lifecycle.

VM.1-3. The
vulnerability
management
plan includes a
process for gaining
timely awareness
of and managing
vulnerabilities that are
discovered in third-
party components of
the software.

VM.2.
Vulnerabilities
are identified
and resolved
rapidly and
comprehensively,
according to
risk-based
prioritization.

VM.2-1. Upon
identification,
vulnerabilities are
verified and subjecte d
to root cause and risk
analysis.

VM.2-2. Vulnerabilities
are assigned a unique
identification number.

The BSA Framework for Secure Software: A New Approach to Securing the Software Lifecycle

Comments on
Category Subcategory Diagnost ic Statement Implementat ion

Relevant Standards and
Informat ive Resources

SECURE LIFECYCLE

Vulnerability
Management
(VM)
(continued)

CVSS

ISO/IEC 30111; SAFECode
“ Fundamental Practices” ;
SAMM

ISO 29147; SAFECode
“ Fundamental Practices” ;
SAMM; ENISA Good
Practice Guide on
Vulnerability Disclosure;
IoT Security Foundation
Vulnerability Disclosure
Best Practice Guidelines

ISO 29147; SAFECode
“ Fundamental Practices” ;
IoT Security Foundation
Vulnerability Disclosure
Best Practice Guidelines

ISO 29147; ENISA Good
Practice Guide on
Vulnerability Disclosure;
IoT Security Foundation
Vulnerability Disclosure
Best Practice Guidelines

www b. sa o. rg 27

VM.2.
Vulnerabilities
are identified
and resolved
rapidly and
comprehensively,
according to
risk-based
prioritization.

VM.2-3. Vulnerabilities
are assigned a severity
value based on risk,
using a standardized
scoring methodology.

VM.2-4. Remediation
and mitigation
activities are informed
by the severity of the
vulnerability.

VM.3. The
vendor maintains
a coordinated
vulnerability
disclosure
program.

VM.3-1. The vendor
establishes a clearly
defined and easily
accessible intake
mechanism to
accept vulnerability
information (email,
portal, etc.).

VM.3-2. A vendor’s
intake mechanism
provides for secure
and confidential
communication of
sensitive vulnerability
information.

VM.3-3. The vendor
publishes, in simple
and clear language, its
policies for interacting
with vulnerability
reporters, addressing,
at minimum: (1) how
the vendor would like
to be contacted, (2)
options for secure
communication, (3)
expectations for
communication from
the vendor regarding
the status of a reported
vulnerability, (4) desired
information regarding a
potential vulnerability,
(5) issues that are
out of scope of the
vulnerability disclosure
program, (6) how
submitted vulnerability
reports are tracked,
and (7) expectations
for whether and how
a reporter will be
credited.

The BSA Framework for Secure Software: A New Approach to Securing the Software Lifecycle

Comments on
Category Subcategory Diagnost ic Statement Implementat ion

Relevant Standards and
Informat ive Resources

SECURE LIFECYCLE

Vulnerabilit y
Management
(VM)
(continued)

Configurat ion
(CF)

ISO 29147

ISO 29147

DHS/DACS

BSIMM; DHS/DACS

DHS/DACS

NIST Special Publication
800-126

28 BSA | The Software Alliance

VM.3. The
vendor maintains
a coordinated
vulnerability
disclosure
program.

VM.3-4. The vendor
maintains a system to
record and track all
reports of potential
vulnerabilities.

VM.3-5. The vendor
notifies vulne rab ility
reporters of when
reported vulnerabilities
are remediated or
mitigated.

CF.1. The software is
deployed with
configurations
and configuration
guidance that
facilitate secure
installation and
operation.

CF.1-1. The software
documentation
specifie s configuration
parameters that are as
restrictive as feasible, to
make sure the software
is as resistant as
possible to anticipated
attacks and exploits.

CF.1-2. The software
documentation
describes secure
installation procedures
for initial installation
and installation for
additional components,
updates, and patches.

CF.1-3. The software
documentation
describes
configurations and
procedures for secure
configuration under
normal operation.

CF.1-4. The software
prompts users to
change any default
passwords before the
software becomes
operational.

CF.1-5. Configuration
guidance statements
and configuration
controls are clearly
communicated and
automated wherever
possible.

The BSA Framework for Secure Software: A New Approach to Securing the Software Lifecycle

Comments on
Category Subcategory Diagnost ic Statement Implementat ion

Relevant Standards and
Informat ive Resources

SECURE LIFECYCLE

Configurat ion
(CF)
(continued)

Vulnerabilit y
Not ifi cat ion
and Patching
(VN)

ISO/IEC 30111; SAFECode
“ Fundamental Practices” ;
DHS/DACS; Microsoft SDL;
SAMM

DHS/DACS; Microsoft SDL

DHS/DACS

ISO/IEC 30111; FIRST
“ Guidelines and Practices
for Multi-Party Vulnerability
Coordination and
Disclosure”

NTIA “ Voluntary
Framework for Enhancing
Update Process Security”

ISO/IEC 29147; NTIA
“ Voluntary Framework for
Enhancing Update Process
Security”

www b. sa o. rg 29

CF.1. The software is
deployed with
configurations
and configuration
guidance that
facilitate secure
installation and
operation.

CF.1-6. Software
configuration se ttings
can be altered to tailor
security settings to the
operating environment.

User configuration may
not always be possible or
necessary. However, where
viable, the software should be
delive red in a configuration
that is as secure as possible
based on its anticipated usage,
and should support the ability
of users to modify security
settings to accommodate
changing environments or
requirements.

VN.1. Vendors
disseminate
timely patches or
updates to address
identified security
issues.

VN.1-1. Patches or
updates are developed
and disseminated
based on risk-informed
prioritization, in
accordance with the
vendor’s vulnerability
management program.

VN.1-2. Patches
or updates are
subjected to testing
for functionality and
security prior to release.

VN.1-3. All patches
and updates are
documented.

VN.1-4. Development
and dissemination of
patches or updates
are coordinated with
other vendors where
appropriate to address
multi-vendor security
issues or supply chain
security issues.

VN.2. Patches
or updates are
disseminated
securely.

VN.2-1. Patches or
updates are transmitted
in a manner that
prevents exposure of
the software image.

VN.2-2. The patch or
update deliverable
is cryptographically
signed to ensure
its integrity and
authenticity.

The BSA Framework for Secure Software: A New Approach to Securing the Software Lifecycle

Comments on
Category Subcategory Diagnost ic Statement Implementat ion

Relevant Standards and
Informat ive Resources

SECURE LIFECYCLE

Vulnerabilit y
Not ifi cat ion
and Patching
(VN)
(continued)

SAFECode “ Fundamental
Practices”

ISO/IEC 29147; SAFECode
“ Fundamental Practices”

End-of-Life (EL) EL.1. Vendor
maintain consistent
lifecycle guidance.

EL.1-3. Software is
continually monitored
to ensure that third-
party components have
not reached end-of-
life milestones or are
removed or otherwise
remediated.

30 BSA | The Software Alliance

VN.3. Patches
or updates for
security issues are
accompanied by
advisory messages
informing users
of relevant
information.

VN.3-1. Users are
notified of a significant
security issue when a
remediation is in place
for each supported
version of the affected
product.

VN.3-2. Advisory
messages notifying
users of security issues
include information
on affected products,
applicable versions,
and platforms; a unique
identification number;
and a brief description
of the vulnerability and
its potential impact.

EL.1-1. Vendor
communicates realistic
assumptions and
expectations regarding
the nature and lifespan
of product support
in tandem with initial
software delivery.

EL.1-2. Vendor
clearly communicates
decisions to terminate
support for a software
product to customers
and users, identifying
the expected support
termination date; the
anticipated risk of
continued product use
beyond the termination
of support; possible
mitigation actions;
and options for
technical migration to
replacement products.

The BSA Framework for Secure Software: A New Approach to Securing the Software Lifecycle

Definit ions

Access Cont rol. Means to ensure that access to assets
is authorized and restricted based on business and
security requirements. (Source: ISO/IEC 27000: 2018)

Algorithm. A finite set of well-defined rules for the
solution of a problem in a finite number of steps,
sequence of operations for performing a specific
task, or finite ordered set of well-defined rules for the
solution of a problem. (Source: ISO/IEC/IEEE 24765:
2017)

Authent icat ion. Provision of assurance that a claimed
characteristic of an entity is correct. (Source: ISO/IEC
27000: 2018)

Control. A measure that is modifying risk. Controls
include any process, policy, device, practice, or other
actions that modify risk. (Source: ISO/IEC 27000: 2018)

Error. Discrepancy between a computed, observed, or
measured value or condition and the true, specified, or
theoretically correct value or condition. (Source: ISO/
IEC 15026-1: 2019)

Except ion. An event that causes suspension of normal
program execution, or an indication that an operation
request was not performed successfully. (Source: ISO/
IEC/IEEE 24765: 2017)

Fault isolat ion. The ability of a subsystem to prevent a
fault within the subsystem from causing consequential
faults in other subsystems. (Source: ISO/IEC/IEEE
24765: 2017)

Fuzzing. A means of testing that causes a software
program to consume deliberately malformed data to
see how the program reacts. (Source: Microsoft Security
Development Lifecycle Process Guidance Version 5.2)

Lifecycle. States involved in the management of an
asset; evolution of a system, product, service, project,
or other human-made entity from conception through
retirement. (Sources: ISO/IEC 12207: 2017; ISO/IEC
27034: 2011)

Mit igat ion. The process of remediating a weakness,
leaving the software in a more secure state. (Source:
Common Weakness Enumeration/MITRE)

Patch. A modification made directly to an object
program without reassembling or recompiling from
the source program, or a software component that,
when installed, directly modifies files or device settings
related to a different software component without
changing the version number or release details for the
related software component. (Source: ISO/IEC 19770-2:
2015)

Penet rat ion test ing. A test method in which the
security of a computer program or network is subjected
to deliberate simulated attack. (Source: Microsoft
Security Development Lifecycle Process Guidance
Version 5.2)

Release gate. A specific point established in the
software development lifecycle where a project
may not move forward until it meets certain security
conditions established by an organization at the
project’s inception. (Adapted from Software Assurance
Maturity Model, Version 1.0)

Risk. An expression of the effect of uncertainty on
cybersecurity objectives, as understood through the
analysis of identified threats to a product or system,
the known vulnerabilities of that product or system,
and the potential consequences of the compromise
of the product or system. (Source: BSA International
Cybersecurity Policy Framework)

Sandboxing. A restricted, controlled execution
environment that prevents potentially malicious
software, such as mobile code, from accessing any
system resources except those for which the software
is authorized. (Source: Committee on National Security
Systems No. 4009)

Software. All or part of the programs that process or
support the processing of digital information. (Source:
ISO/IEC 12207: 2017)

Third-party components. Components of a software
project of external origin, including open-source
components, purchased commercial off-the-shelf
software, and online services used by the software
project. (Adapted from Software Assurance Maturity
Model, Version 1.5)

www b. sa o. rg 31

IV. References

The BSA Framework for Secure Software: A New Approach to Securing the Software Lifecycle

Threat modeling. A systematic exploration technique
to expose any circumstance or event having the
potential to cause harm to a system in the form of
destruction, disclosure, modification of data, or denial
of service. (Source: ISO/IEC/IEEE 24765: 2017)

Acronyms

BSIMM Building Security in Maturity Model,
Version 9

CAPEC Common Attack Pattern
Enumeration and Classification

CVSS Common Vulnerability Scoring
System

CWSS Common Weakness Scoring System

DHS/DACS Department of Homeland
Security/Data & Analysis Center
for Software, Enhancing the
Development Life Cycle to Produce
Secure Software, Version. 2.0.

DoD-PPP Department of Defense, “ Software
Assurance Countermeasures in
Program Protection Planning”

FIPS Federal Information Processing
Standards

ISO/IEC International Organization for
Standardization/International
Electrotechnical Commission

Microsoft SDL Microsoft’s Security Development
Lifecycle Process Guidance, Version
5.2

NCSC United Kingdom National
Cyber Security Centre Secure
Development and Deployment
Guidance

NIST National Institute for Standards and
Technology

Vulnerability. Weakness of software, hardware, or
online service that can be exploited. (Source: ISO/IEC
30111: 2013)

Weakness. A type of mistake in software that, in proper
conditions, could contribute to the introduction of
vulnerabilities within that software. (Source: Common
Weakness Enumeration/MITRE)

NIST IR NIST Interagency Report

NIST SP NIST Special Publication

NTIA National Telecommunications and
Information Administration

NVD National Vulnerability Database

OAuth Initiative for Open Authentication

OIDC OpenID Connect

OWASP Open Web Application Security
Project

SAML Security Assertion Markup
Language

SAMM Software Assurance Maturity
Model, Version 1.5

SEI Carnegie Mellon University’s
Software Engineering Institute

SPDX Software Package Data Exchange,
Version 2.1

U2F Universal Second Factor

UAF Universal Authentication
Framework

WS-FED Web Services Federation
Language, Version 1.2

32 BSA | The Software Alliance

SAFECode
“ Fundamental

Pract ices”

SAFECode Fundamental Practices
for Secure Software Development,
Version 3.0

The BSA Framework for Secure Software: A New Approach to Securing the Software Lifecycle

Sources

Adobe, Adobe Secure Engineering Overview, March
2018. https://www.adobe.com/content/dam/acom/en/
security/pdfs/adobe-secure-engineering-wp.pdf.

Apple, Secure Coding Guide. https:/ /developer.
apple.com/library/archive/documentation/Security/
Conceptual/SecureCodingGuide/Introduction.html.

Box, Box Platform Guidelines and Security. https:/ /
developer.box.com/docs/security-guidelines.

BSA | The Software Alliance, BSA International
Cybersecurity Policy Framework. https:/ /
bsacybersecurity.bsa.org/wp-content/uploads/2018/04/
BSA_cybersecurity-policy.pdf.

Carnegie Mellon University Software Engineering
Institute, SEI CERT C Coding Standard: Rules for
Developing Safe, Reliable, and Secure Systems, 2016
Edition, June 2016. https:/ / resources.sei.cmu.edu/
library/asset-view.cfm?assetID=454220.

Carnegie Mellon University Software Engineering
Institute, SEI CERT C++ Coding Standard: Rules for
Developing Safe, Reliable, and Secure Systems, 2016
Edition, March 2017. https:// resources.sei.cmu.edu/
library/asset-view.cfm?assetID=494932.

Carnegie Mellon University Software
Engineering Institute, SEI CERT Oracle Coding
Standard for Java, October 11, 2016. https://
wiki.sei.cmu.edu/confluence/display/java/
SEI+CERT+Oracle+Coding+Standard+for+Java.

Committee on National Security Systems (CNSS),
Committee on National Security Systems Glossary,
CNSS Instruction No. 4009, April 6, 2015. https:/ /www.
cnss.gov/CNSS/issuances/Instructions.cfm.

European Union Agency for Network and Information
Security, Good Practice Guide on Vulnerability
Disclosure, January 18, 2016. https:/ /www.enisa.
europa.eu/publications/vulnerability-disclosure.

FIDO Alliance, Universal 2nd Factor Overview, April
11, 2017. https:// fidoalliance.org/specs/fido-u2f-v1.2-
ps-20170411/fido-u2f-overview-v1.2-ps-20170411.pdf.

FIDO Alliance, Universal Authentication Framework
Architectural Overview, Version 1.1, February 2,
2017. https:// fidoalliance.org/specs/fido-uaf-v1.1-
id-20170202/fido-uaf-overview-v1.1-id-20170202.html.

Forum for Incident Response and Security Teams,
Common Vulnerability Scoring System: Specification
Document, Version 3.0. https://www.first.org/cvss/cvss-
v30-specification-v1.8.pdf.

Forum for Incident Response and Security Teams,
Guidelines and Practices for Multi-Party Vulnerability
Coordination and Disclosure, Version 1.0, Summer
2017. https:/ /www.first.org/global/sigs/vulnerability-
coordination/multiparty/FIRST-Multiparty-Vulnerability-
Coordination-latest.pdf?20180320.

Howard, Michael and Steve Lipner, The Security
Development Lifecycle: A Process for Developing
Demonstrably More Secure Software, 2006, Redmond,
WA: Microsoft Press.

IBM, Security in Development: The IBM Secure
Engineering Framework, 2010. https://www.redbooks.
ibm.com/redpapers/pdfs/redp4641.pdf.

Initiative for Open Authentication, OAuth 2.0, October
2012. https:/ /oauth.net/2/ .

International Organization of Standardization,
Information Technology—IT Asset Management—Parts
1–2, ISO/IEC 19770 (1: 2017–2: 2015).

International Organization of Standardization,
Information Technology—Security Techniques—
Information Security Management Systems—Overview
and Vocabulary, ISO/ IEC 27000: 2018.

International Organization of Standardization,
Information Technology—Security Techniques—Entity
Authentication—Parts 1–3, ISO/IEC 9798- (1: 2010–3:
2019).

International Organization of Standardization,
Information Technology—Programming Languages,
Their Environments and System Software Interfaces—C
Secure Coding Rules, ISO/IEC TS 17961: 2013.

International Organization of Standardization,
Information Technology—Security Techniques—
Encryption Algorithms—Parts 1–5, ISO/IEC 18033 (1:
2015–5: 2015).

International Organization of Standardization,
Information Technology—Security Techniques—
Authenticated Encryption, ISO/IEC 19772: 2009.

International Organization of Standardization,
Information Technology—Security Techniques—
Security Requirements for Cryptographic Modules,
ISO/IEC 19790: 2012.

www b. sa o. rg 33

The BSA Framework for Secure Software: A New Approach to Securing the Software Lifecycle

International Organization of Standardization,
Information Technology—Security Techniques—
Application Security; Parts 1–7, ISO/IEC 27034
(1:2011–7:2018).

International Organization of Standardization,
Information Technology—Security Techniques—
Vulnerability Disclosure, ISO/IEC 29147: 2018, October
23, 2018.

International Organization of Standardization,
Information Technology—Security Techniques—
Vulnerability Handling Processes, ISO/IEC 30111: 2013
(E), November 1, 2013.

International Organization of Standardization, Systems
and Software Engineering—Software Lifecycle
Processes, ISO/IEC/IEEE 12207: 2017.

International Organization of Standardization, Systems
and Software Engineering—Systems and Software
Assurance—Part 1: Concepts and Vocabulary, ISO/IEC/
IEEE 15026 (1: 2019).

International Organization of Standardization, Systems
and Software Engineering—Vocabulary, ISO/IEC/IEEE
24765: 2017.

IoT Security Foundation, Vulnerability Disclosure:
Best Practice Guidelines, Release 1.1, December
2017. https:// iotsecurityfoundation.org/wp-content/
uploads/2017/01/Vulnerability-Disclosure.pdf.

The Linux Foundation, Software Package Data
Exchange, Specification Version 2.1, 2016. https://
spdx.org/sites/cpstandard/files/pages/files/
spdxversion2.1.pdf.

McGraw, Gary, Sammy Migues, and Jacob West,
Building Security in Maturity Model (BSIMM), Version 9,
2018. https://www.bsimm.com.

Microsoft, Security Development Lifecycle: SDL Process
Guidance, Version 5.2, May 23, 2012. https://www.
microsoft.com/en-us/download/details.aspx?id=29884.

MITRE Corporation, Common Attack Pattern
Enumeration and Classification, Version 3.0. https:/ /
capec.mitre.org/data/index.html.

MITRE Corporation, Common Weakness Enumeration,
Version 3.2. https:/ /cwe.mitre.org/data/ index.html.

MITRE Corporation, Common Weakness Scoring
System, Version 1.0.1, September 5, 2014. https://cwe.
mitre.org/cwss/cwss_v1.0.1.html.

MITRE Corporation and the SANS Institute, CWE/SANS
Top 25 Most Dangerous Software Errors, Version 1.0.3,
September 13, 2011. https://cwe.mitre.org/top25/
archive/2011/2011_cwe_sans_top25.pdf.

OASIS, Security Assertion Markup Language, Version
2.0, March 25, 2008. http:/ /docs.oasis-open.org/
security/saml/Post2.0/sstc-saml-tech-overview-2.0-
cd-02.pdf.

OASIS, Web Services Federation Language, Version
1.2, May 22, 2009. http:/ /docs.oasis-open.org/wsfed/
federation/v1.2/os/ws-federation-1.2-spec-os.html.

Okta, Okta Security Technical White Paper. https:/ /
www.okta.com/sites/default/ files/Okta%20
Technical%20Security%20Whitepaper.pdf.

Open ID Foundation, Open ID Connect, Version 1.0,
November 8, 2014. https://openid.net/connect/ .

Open Web Application Security Project (OWASP),
Application Security Verification Standard, Version 3.0,
October 2015. https://www.owasp.org/ images/6/67/
OWASPApplicationSecurityVerificationStandard3.0.pdf.

Oracle, Security Practices: Oracle Software Security
Assurance. https:/ /www.oracle.com/corporate/security-
practices/assurance/.

OWASP, Attack Surface Analysis Cheat Sheet. https:/ /
github.com/OWASP/CheatSheetSeries/blob/master/
cheatsheets/Attack_Surface_Analysis_Cheat_Sheet.md.

OWASP, Authentication Cheat Sheet. https:/ /github.
com/OWASP/CheatSheetSeries/blob/master/
cheatsheets/Authentication_Cheat_Sheet.md.

OWASP, C-Based Toolchain Hardening Cheat Sheet.
https://github.com/OWASP/CheatSheetSeries/blob/
master/cheatsheets/C-Based_Toolchain_Hardening_
Cheat_Sheet.md.

OWASP, Code Review Guide, Version 2.0, July 2017.
https://www.owasp.org/ images/5/53/OWASP_Code_
Review_Guide_v2.pdf.

OWASP, Cryptographic Storage Cheat Sheet. https:/ /
github.com/OWASP/CheatSheetSeries/blob/master/
cheatsheets/Cryptographic_Storage_Cheat_Sheet.md.

OWASP, Development Guide, Version 2.0.1, June
2014. https:/ /github.com/OWASP/DevGuide/tree/
dc5a2977a4797d9b98486417a5527b9f15d8a251/
DevGuide2.0.1.

34 BSA | The Software Alliance

The BSA Framework for Secure Software: A New Approach to Securing the Software Lifecycle

OWASP, Input Validation Cheat Sheet. https:/ /
github.com/OWASP/CheatSheetSeries/blob/master/
cheatsheets/Input_Validation_Cheat_Sheet.md.

OWASP, Logging Cheat Sheet. https:/ /github.com/
OWASP/CheatSheetSeries/blob/master/cheatsheets/
Logging_Cheat_Sheet.md.

OWASP, OWASP Top 10 — 2017: The Ten Most
Critical Web Application Security Risks, 2017. https://
www.owasp.org/ images/7/72/OWASP_Top_10-
2017_%28en%29.pdf.pdf.

OWASP, Password Storage Cheat Sheet. https:/ /
github.com/OWASP/CheatSheetSeries/blob/master/
cheatsheets/Password_Storage_Cheat_Sheet.md.

OWASP, Secure Coding Practices Quick Reference
Guide, Version 2.0, November 2010. https://www.
owasp.org/images/0/08/OWASP_SCP_Quick_
Reference_Guide_v2.pdf.

OWASP, Software Assurance Maturity Model, Version
1.5, April 2017. https:/ /owaspsamm.org/v1-5/
downloads/.

OWASP, Testing Guide, Version 4.0, September 2014.
https:/ /www.owasp.org/images/1/19/OTGv4.pdf.

OWASP, Threat Modeling Cheat Sheet. https://
github.com/OWASP/CheatSheetSeries/blob/master/
cheatsheets/Threat_Modeling_Cheat_Sheet.md.

SAFECode, Fundamental Practices for Secure
Software Development, Third Edition, March 2018.
https:/ /safecode.org/wp-content/uploads/2018/03/
SAFECode_Fundamental_Practices_for_Secure_
Software_Development_March_2018.pdf.

SAFECode, Fundamental Practices for Secure Software
Development, Second Edition, February 2011. https://
safecode.org/publication/SAFECode_Dev_
Practices0211.pdf.

SAFECode, Managing Security Risks Inherent in
the Use of Third-Party Components, 2017. https:/ /
safecode.org/wp-content/uploads/2017/05/
SAFECode_TPC_Whitepaper.pdf.

SAFECode, The Software Supply Chain Integrity
Framework: Defining Risks and Responsibilities for
Securing Software in the Global Supply Chain, July
21, 2009. http:/ /safecode.org/publication/SAFECode_
Supply_Chain0709.pdf.

SAFECode, Tactical Threat Modeling, May 2017.
https:/ /safecode.org/wp-content/uploads/2017/05/
SAFECode_TM_Whitepaper.pdf.

Salesforce, Secure Coding Guide, Version 45.0, January
30, 2019. https:/ / resources.docs.salesforce.com/218/
latest/en-us/sfdc/pdf/secure_coding.pdf.

Symantec, “ Executive Summary: Symantec Software
Security Process,” 2019. https:/ /www.symantec. com/
content/dam/symantec/docs/other-resources/
symantec_software_security_process.pdf.

United Kingdom National Cyber Security Centre
Secure, Guidance for Secure Development and
Deployment, December 11, 2017. https://www.
ncsc.gov.uk/guidance/secure-development-and-
deployment.

United States Department of Defense, “ Software
Assurance Countermeasures in Program Protection
Planning,” March 2014. https:/ /www.acq.osd.mil/se/
docs/swa-cm-in-ppp.pdf.

United States Department of Homeland Security/
Data & Analysis Center for Software, Enhancing the
Development Life Cycle to Produce Secure Software,
Version. 2.0, October 2008. http://www.seas.upenn.
edu/~lee/09cis480/papers/DACS-358844.pdf.

United States National Institute for Standards
and Technology, BIOS Protection Guidelines:
Recommendations of the National Institute of
Standards and Technology, Special Publication 800-
147, April 2011. https:/ /nvlpubs.nist.gov/nistpubs/
Legacy/SP/nistspecialpublication800-147.pdf.

United States National Institute for Standards and
Technology, Digital Identity Guidelines, Special
Publication 800-63-3, June 2017. https:/ /nvlpubs.nist.
gov/nistpubs/SpecialPublications/NIST.SP.800-63-3.pdf.

United States National Institute for Standards and
Technology, Federal Information Processing Standards.
https://www.nist.gov/standardsgov/compliance-faqs-
federal-information-processing-standards-fips.

United States National Institute for Standards
and Technology, Guidelines for the Creation of
Interoperable Software Identification (SWID) Tags,
Interagency Report 8060, April 2016. https:/ /nvlpubs.
nist.gov/nistpubs/ir/2016/NIST.IR.8060.pdf.

United States National Institute for Standards and
Technology, National Vulnerability Database. https:/ /
nvd.nist.gov/.

United States National Institute for Standards and
Technology, Notional Supply Chain Risk Management
Practices for Federal Information Systems, Interagency
Report 7622, October 2012. https:/ /csrc.nist.gov/
publications/detail/nistir/7622/final.

www b. sa o. rg 35

The BSA Framework for Secure Software: A New Approach to Securing the Software Lifecycle

United States National Institute for Standards and
Technology, Recommendation for Key Management:
Part I: General, Special Publication 800-57, Revision
4, January 2016. https:/ /nvlpubs.nist.gov/nistpubs/
SpecialPublications/NIST.SP.800-57pt1r4.pdf.

United States National Institute for Standards and
Technology, Security and Privacy Controls for Federal
Information Systems and Organizations, Special
Publication 800-53, Revision 4, April 2013. https:/ /
nvlpubs.nist.gov/nistpubs/specialpublications/nist.
sp.800-53r4.pdf.

United States National Institute for Standards and
Technology, The Technical Specification for the Security
Content Automation Protocol, Special Publication 800-
126, Revision 3, February 2018. https://nvlpubs.nist.
gov/nistpubs/SpecialPublications/NIST.SP.800-126r3.
pdf.

United States National Telecommunications and
Information Administration, Voluntary Framework for
Enhancing Update Process Security, October 31, 2017.
https:/ /www.ntia.doc.gov/files/ntia/publications/ntia_
iot_capabilities_oct31.pdf.

36 BSA | The Software Alliance

BSA Worldwide Headquarters

20 F Street, NW
Suite 800
Washington, DC 20001

+1 2. 02 8. 72 5. 500

@BSAnews

@BSATheSoftwareAlliance

BSA Asia-Pacific

300 Beach Road
#25-08 The Concourse
Singapore 199555

+65 6. 292 2. 072

@BSAnewsAPAC

BSA Europe, Middle East & Africa

65 Petty France
Ground Floor
London, SW1H 9EU
United Kingdom

+44 2. 07 3. 40 6. 080

@BSAnewsEU

Australia’s 2020 Cyber Security Strategy – BSA Comments

Annex C

BSA Principles for Good Governance:
Supply Chain Risk Management

BSA Principles for Good
Governance: Supply Chain
Risk Management

Managing security risks to information technology supply chains is an important priority for both governments
and businesses globally. Information and communications technologies store, process, and transmit vast
volumes of data, underpin the global digital economy and support the operations of governments, critical
infrastructures, and societies. When malicious actors exploit supply chain vulnerabilities, they can cause
unacceptable harm to privacy, security, and commerce. Yet, mistargeted policy interventions aimed at
improving security can introduce unintended consequences by causing severe damage to the technologies
and economic activities they seek to protect.

Effective government approaches to supply chain risk management recognize the global, interconnected
nature of supply chains and the threats against them, identifying and disrupting malicious actors through
policies and processes that are sustainable, reciprocal, and transparent.

As governments around the world seek to address supply chain risk management, BSA asserts the principles
below to guide effective policy responses. BSA will use these principles to evaluate national supply chain risk
management policies and to work toward enhancing the security, integrity, and vitality of the global digital
economy.

Risk Management

Governments should adopt risk management
approaches to supply chain security. Risk
management entails understanding risk through the
identification of likely threats, vulnerabilities and
potential consequences, tailoring mitigation
strategies to risks, and prioritizing actions based on
the most relevant and potentially impactful risks.
Risk management approaches retain flexibility that
enable security practitioners within both
governments and businesses to adapt to a
constantly evolving threat environment. Finally, risk
management approaches consider not only risks
from malicious actors, but also the risks, timelines,
and costs associated with potential mitigation
options, helping policymakers avoid unintended
consequences of mistargeted policies.

A corollary to this principle is that supply chain
security policies should empower governments to
take action based on security risks. Further, policies
should foster, not hinder, global technology
competition, and allow nations to meet their
international trade commitments.

Interoperability

Modern technology supply chains are often
transnational, and so too are threats against them.
As such, effective policies will embrace
interoperability – consistency and compatibility of
regulations and technical standards across national
borders – and will avoid adopting categorical
prohibitions against the acquisition or integration of
technologies simply because they are developed
abroad. A good rule of thumb is: a government
should adopt policies only to the extent it is
comfortable with other governments enforcing those
policies against its own businesses.

Building policies around internationally recognized,
industry driven standards ensures that technology
providers can develop, maintain, and secure
innovative products across global boundaries and
help to facilitate transnational operational
collaboration against significant cyber threats.

www.bsa.org

Transparency

Opaque government supply chain risk management
policies and processes, such as the debarment of
certain foreign vendors from acquisition processes
without notification or justification, create confusion
and can prompt protectionist interventions by other
governments, undermining the economic
competitiveness of global businesses. Absent
exceptional circumstances, government supply
chain risk management policies and their
implementation should be transparent to the public,
with specific actions notified to impacted
stakeholders. In any case in which a government
denies market access to a vendor or technology,
that government should articulate a public
justification outlining specific security concerns
prompting the action.

In addition, the transparency principle should oblige
the government to provide for disclosure of identified
supply chain vulnerabilities to suppliers, in
accordance with vulnerability disclosure
methodologies described in ISO/IEC 29147.
Government vulnerability disclosure can improve the
overall security of the digital ecosystem and improve
public-private collaboration against supply chain
threats.

Discretion

Enhancing supply chain security means, in part,
developing a more secure global cybersecurity
ecosystem that recognizes norms for responsible
behavior and prioritizes collective defense against
malicious threats. Governments should pledge that
they will not undertake systemic interventions in
global supply chains.

Enforcement

While state actors may present the most
sophisticated threats, supply chains are also under
constant pressure from non-state actors engaging in
malicious cybersecurity activity, counterfeiting,
product diversion, and related activities. A key
element of a government’s supply chain risk
management strategy must be to pursue aggressive
law enforcement against malicious actors within its
jurisdiction.

Collaboration

Government supply chain risk management efforts
will be most effective when undertaken in
collaboration with key non-governmental
stakeholders, including industry. As industry
increasingly provides leadership on addressing
supply chain concerns, governments should
embrace creative opportunities for public-private
partnerships aimed at securing supply chains and
developing best practices for supply chain risk
management. Recent efforts like the Paris Call for
Trust and Security in Cyberspace are promising.
Likewise, collaboration should be sought on a
government-to-government basis with key partners
through the expansion of supply chain threat
information-sharing and operational cooperation
against supply chain threats.

Fairness

Supply chain risk management processes should
establish meaningful mechanisms for resolving
disputes, including opportunities for impacted
stakeholders to appeal or protest decisions, provide
defense against any alleged offenses, and
remediate past concerns. Dispute resolution
mechanisms create an environment of certainty and
predictability without limiting tools for mitigating risk.

Research and Development

Securing global supply chains will be an ongoing
challenge – one in which security techniques must
adapt to an ever-changing environment of new
technologies and new threats. By investing in the
research and development of new technological
approaches to fostering supply chain integrity,
governments can gain and maintain the advantage
against malicious actors. Promising areas of
research include the use of blockchain-based
technologies, development of processes to vet third-
party components for security issues, and the
application of artificial intelligence for the analysis of
supply chain data and anomaly detection, among
others.

www.bsa.org

